
- •Биохимия мышечной ткани.
- •Морфологическая организация поперечнополосатой мышцы
- •Химический состав поперечнополосатой мышцы
- •Мышечные белки
- •Небелковые азотистые экстрактивные вещества
- •Безазотистые вещества
- •Функциональная биохимия мышц
- •Источники энергии мышечной деятельности
- •Механизм мышечного сокращения
- •Ооооооооо
- •Биохимические процессы, происходящие в мышце при сокращении и расслаблении
- •Биоэнергетические процессы при мышечной деятельности источники энергии при мышечной работе
- •Биохимические изменения в мышцах при патологии
- •Химический состав мышечной ткани
- •Свойства и структурная организация сократительных белков
- •Биоэнергетические процессы при мышечной деятельности источники энергии при мышечной работе
- •Ресинтез атф в креатинфосфокиназной реакции
- •Ресинтез атф в процессе гликолиза
- •Ресинтез атф в миокиназной реакции
- •Соотношение процессов аэробного и анаэробного ресинтеза атф в упражнениях разной мощности и длительности
- •Динамика биохимических процессов в организме человека при мышечной деятельности
- •Транспорт кислорода к работающим мышцам
- •Мобилизация энергетических ресурсов при мышечной работе
- •Потребление кислорода при мышечной работе
- •Лимитирующие факторы спортивной работоспособности
- •Биоэнергетические критерии физической работоспособности спортсменов
- •Показатели аэробной и анаэробной работоспособности спортсменов
- •Специфичность спортивной работоспособности
- •Влияние тренировки на работоспособность спортсменов
- •Последовательность адаптационных изменений в процессе тренировки
- •Взаимодействие тренировочных эффектов и потенцирование адаптационных изменений при тренировке
- •Систематизация упражнений по характеру биохимических изменений при работе
- •Методы тренировки, способствующие развитию выносливости
- •Микроструктурные и биохимические изменения (% от исходного уровня) в мышечных волокнах под влиянием тренировки с использованием различных видов упражнений (н. Н. Яковлев, 1983)
- •Обратимость адаптации
- •Цикличность развития адаптации и периодизация тренировки
- •Эффективность адаптации и оптимизация тренировочного процесса
- •Влияние тренировки на работоспособность спортсменов
- •Биохимические основы методов скоростно-силовои подготовки спортсменов
- •Биохимические изменения в организме при утомлении и в период отдыха после мышечной работы
- •Динамика биохимических процессов в период отдыха после мышечной работы
Небелковые азотистые экстрактивные вещества
В скелетных мышцах содержится ряд важных азотистых экстрактивных веществ: адениновые нуклеотиды (АТФ, АДФ и АМФ), нуклеотиды неаденинового ряда, креатин-фосфат, креатин, креатинин, карнозин, ансерин, свободные аминокислоты и др. Концентрация адениновых нуклеотидов в скелетной мускулатуре кролика (в микромолях на 1 г сырой массы ткани) составляет: АТФ-4,43, АДФ-0,81, АМФ - 0,93. Количество нуклеотидов неаденинового ряда (ГТФ, УТФ, ЦТФ и др.) в мышечной ткани по сравнению с концентрацией адениновых нуклеотидов очень мало. На долю креатина и креатинфосфата приходится до 60 % небелкового азота мышц [Фердман Д. Л., 1966]. Креатинфосфат и креатин относятся к тем азотистым экстрактивным веществам мышц, которые участвуют в химических процессах, связанных с мышечным сокращением. Синтез креатина в основном происходит в печени, откуда он с током крови поступает в мышечную ткань. Здесь креатин, фосфорилируясь, превращается в Креатинфосфат. В синтезе креатина участвуют три аминокислоты: аргинин, глицин и метионин .
К числу азотистых веществ мышечной ткани принадлежат и имидазолсодержащие дипептиды - карнозин и ансерин. Карнозин был открыт В. С. Гулевичем в 1900 г.; метилированное производное карнозина - ансерин был обнаружен в мышечной ткани несколько позже.
NН
I О=С-СН2-
СН2-NН2
Kарнозин (β-алакцл-L_-гистидин)
Карнозин и ансерин — специфические азотистые вещества скелетной мускулатупы, позвоночных — увеличивают амплитуду мышечного сокращения, предварительно сниженную утомлением. Работами акад. С. Е. Северина показано, что имидазолсо-держащие дипептиды не влияют непосредственно на сократительный аппарат, Но увеличивают эффективность работы ионных насосов мышечной клетки.
Среди свободных аминокислот в мышцах наиболее высокую концентрацию имеет глутаминовая кислота (до 1,2 г/кг) и ее амид — глутамин (0,8—1,0 г/кг). В состав различных клеточных мембран мышечной ткани входит ряд фосфоглицеридов: фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин и др. Кроме того, фосфо-глицериды принимают участие в обменных процессах, в частности, в качестве субстратов тканевого дыхания. Другие азотсодержащие вещества: мочевина, мочевая кислота, аденин, гуанин, ксантин и гипоксантин — встречаются в мышечной ткани в небольшом количестве и, как правило, являются либо промежуточными, либо конечными продуктами азотистого обмена,
Безазотистые вещества
Одним из основных представителей безазотистых органических веществ мышечной ткани является гликоген; его концентрация колеблется от 0,3 до 2% и выше. На долю других представителей углеводов приходятся десятые и сотые доли процента. В мышцах находят лишь следы свободной глюкозы и очень мало гексо-зофосфатов. В процессе метаболизма глюкозы, а также аминокислот в мышечной ткани образуются молочная, пировиноградная кислоты и много других карбоновых кислот. В мышечной ткани обнаруживаются также в том или ином количестве триглицериды и холестерин.
Состав неорганических солей в мышцах разнообразен. Среди катионов наибольшую концентрацию имеют калий и натрий. Калий сосредоточен главным образом внутри мышечных волокон, а натрий — преимущественно в межклеточном веществе. Значительно меньше в мышцах магния, кальция и железа. В мышечной ткани содержится ряд микроэлементов: кобальт, алюминий, никель, бор, цинк и др.
Имеется определенная зависимость между характером деятельности мыщц и содержанием фосфоглицеридов. Миокард по сравнению с другими мышечными тканями богаче фосфо-глицеридами, при окислении которых, по-видимому, вырабатывается значительная часть энергии, необходимой для его сокращения.