
- •Биохимия мышечной ткани.
- •Морфологическая организация поперечнополосатой мышцы
- •Химический состав поперечнополосатой мышцы
- •Мышечные белки
- •Небелковые азотистые экстрактивные вещества
- •Безазотистые вещества
- •Функциональная биохимия мышц
- •Источники энергии мышечной деятельности
- •Механизм мышечного сокращения
- •Ооооооооо
- •Биохимические процессы, происходящие в мышце при сокращении и расслаблении
- •Биоэнергетические процессы при мышечной деятельности источники энергии при мышечной работе
- •Биохимические изменения в мышцах при патологии
- •Химический состав мышечной ткани
- •Свойства и структурная организация сократительных белков
- •Биоэнергетические процессы при мышечной деятельности источники энергии при мышечной работе
- •Ресинтез атф в креатинфосфокиназной реакции
- •Ресинтез атф в процессе гликолиза
- •Ресинтез атф в миокиназной реакции
- •Соотношение процессов аэробного и анаэробного ресинтеза атф в упражнениях разной мощности и длительности
- •Динамика биохимических процессов в организме человека при мышечной деятельности
- •Транспорт кислорода к работающим мышцам
- •Мобилизация энергетических ресурсов при мышечной работе
- •Потребление кислорода при мышечной работе
- •Лимитирующие факторы спортивной работоспособности
- •Биоэнергетические критерии физической работоспособности спортсменов
- •Показатели аэробной и анаэробной работоспособности спортсменов
- •Специфичность спортивной работоспособности
- •Влияние тренировки на работоспособность спортсменов
- •Последовательность адаптационных изменений в процессе тренировки
- •Взаимодействие тренировочных эффектов и потенцирование адаптационных изменений при тренировке
- •Систематизация упражнений по характеру биохимических изменений при работе
- •Методы тренировки, способствующие развитию выносливости
- •Микроструктурные и биохимические изменения (% от исходного уровня) в мышечных волокнах под влиянием тренировки с использованием различных видов упражнений (н. Н. Яковлев, 1983)
- •Обратимость адаптации
- •Цикличность развития адаптации и периодизация тренировки
- •Эффективность адаптации и оптимизация тренировочного процесса
- •Влияние тренировки на работоспособность спортсменов
- •Биохимические основы методов скоростно-силовои подготовки спортсменов
- •Биохимические изменения в организме при утомлении и в период отдыха после мышечной работы
- •Динамика биохимических процессов в период отдыха после мышечной работы
Методы тренировки, способствующие развитию выносливости
Применяемые для развития выносливости методы тренировки оказывают выраженное избирательное воздействие на отдельные биоэнергетические функции. Наиболее эффективными методами развития выносливости являются метод длительной непрерывной работы (равномерной или переменной), а также методы повторной и интервальной тренировки. Обычно их разделяют по направленности на развитие аэробного или анаэробного компонента выносливости.
В тренировке, направленной на развитие алактатного анаэробного компонента выносливости, чаще всего используют методы повторной и интервальной работы («интервальный спринт»). Основная цель такого рода тренировки - добиться максимального исчерпания алактатных анаэробных резервов в работающих мышцах и повысить устойчивость ключевых ферментов алактатной анаэробной системы (миозиновой АТФ-азы и саркоплазматической креатинфосфокиназы) в условиях накопления продуктов анаэробного распада (АДФ, НзРО4, молочной кислоты и т. п.). Решить эту задачу можно лишь путем большого числа повторений кратковременных (продолжительностью не более 10—15 с) упражнений высокой интенсивности (90—95% от Wтах).
При методе повторной тренировки выносливости, когда применяются упражнения максимальной мощности, паузы отдыха между ними должны обеспечить достаточно полное восстановление растрачиваемых при работе алактатных анаэробных резервов, то есть должны соответствовать времени оплаты быстрой фракции О2-долга и составлять не менее 2,5—3мин.
Расщепление фосфатных макроэргов (АТФ + КрФ) при выполнении упражнений максимальной мощности приводит к резкому увеличению скорости потребления О2 в первые секунды после работы, когда осуществляется окислительный ресинтез КрФ в работающих мышцах. Наибольшая скорость этого процесса соответствует отставленному максимуму в кривой потребления О2, который наблюдается на 1-й минуте восстановления после завершения упражнения. В этот период значительно снижается скорость выделения «неметаболического излишка» СО2. значения «пикового» потребления О2 и накопление молочной кислоты в крови непрерывно возрастают вплоть до 5—6-го повторения упражнения, что свидетельствует о постепенном исчерпании емкости алактатных анаэробных резервов. Как только будет достигнута критическая величина исчерпания запасов КрФ в работающих мышцах, сразу же снизится максимальная мощность. Обычно такое состояние достигается к 8—10-му повторению упражнения. Это число повторений следует признать оптимальным для данного метода тренировки алактатного компонента выносливости.
В отличие от повторного метода тренировки, где интервалы отдыха не регламентируются, в интервальном методе величина их подбирается таким образом, чтобы обеспечить наиболее выраженное воздействие па тренируемую функцию. Изменение этой величины при повторном выполнении упражнений максимальной мощности влияет на динамику биохимических сдвигов в организме.
При уменьшении интервалов отдыха между упражнениями до 1 мин еще наблюдается отставленный максимум потребления 02, что свидетельствует об активизации процессов восполнения алактатных анаэробных резервов с каждым очередным повторением максимального усилия. Однако, когда продолжительность интервалов отдыха сокращается до 30 с, оставленный максимум исчезает. Вместо этого появляется пилообразная кривая с наивысшими значениями скорости потребления О2 в конце каждого повторения максимального усилия и небольшим снижением в паузах отдыха. Эта кривая быстро растет при первых 5—6 повторениях упражнения и дальше не меняется, устанавливаясь на определенном уровне, соответствующем тяжести выполняемой интервальной работы, что в данных условиях зависит от величины избранных интервалов отдыха. Если интервалы отдыха сокращаются до 10 с, уровень «пикового» потребления O2 при выполнении упражнений сравнивается с величиной МПК. Сокращение интервалов отдыха в этих условиях сопровождается усилением при первых 5 — 6 повторениях избыточного выделения СО2, быстрым накоплением молочной кислоты и снижением рН крови.
Дальнейшее увеличение числа повторений приводит к изменению тренировочного эффекта интервальной работы: он приобретает смешанный аэробно-анаэробный характер. Поэтому если в интервальном методе применяются кратковременные максимальные усилия чередуемые с короткими интервалами отдыха (менее 30 с) то для создания алактатного анаэробного эффекта тренировочную работу придется выполнять сериями по 5-6 повторений в каждой с интервалами отдыха между сериями не менее 3х минут.
При развитии гликолитического анаэробного компонента выносливости могут быть использованы методы однократной, предельной, повторной и интервальной работы. Избираемые характеристики упражнения должны обеспечить предельное усиление анаэробных гликолитических превращений в работающих мышцах. Этим условиям соответствует выполнение предельных усилий в интервале от 30с до 2,5 мин.
Повторное выполнение упражнений гликолитического анаэробного характера через большие и нерегламентируемые интервалы отдыха позволяет с каждым новым повторение воспроизводить программируемый тренировочный эффект. Предельное число повторений упражнения в этом случае зависит от снижения запасов гликогена в работающих мышцах и достижения предельных величин закисления (как правило, на 6-8-м повторении предельного усилия).
В интервальной работе гликолитического анаэробного характера сокращение продолжительности пауз отдыха не изменяет уровня «пикового» потребления О2 (он в этих упражнениях достигает максимальных значений), но ведет к быстрому увеличению восстановительных излишков потребления О2, повышению скорости накопления молочной кислоты в крови и развитию выраженного утомления. При этом достигается наибольшая скорость анаэробного гликолиза, в работающих мышцах и самые высокие значения максимума накопления молочной кислоты в крови.
Чтобы выполнить необходимый объем работы, достаточный для закрепления тренировочного эффекта, интервальная работа с короткими паузами отдыха обычно выполняется сериями по 3-4 повторения, разделенными 10-15-минутным отдыхом, который необходим для восстановления работоспособности после предельной анаэробной работы.
Чтобы обеспечить достаточное воздействие на аэробный обмен при использовании методов однократной непрерывной и повторной работы, общая продолжительность упражнения должна составлять не менее 3 мин, достаточных для врабатывания и выхода на стационарный уровень потребления 02. В однократной непрерывной работе объем нагрузки, вызывающий соответствующие адаптационные перестройки в организме, составляет обычно не менее 30 мин.
Интенсивность выполняемого упражнения при однократной непрерывной работе должна обеспечить значительную интенсификацию аэробных превращений в тканях. Как видно на приводимых графиках, после начального периода врабатывания уровень потребления 02 устанавливается вблизи его максимальных значений. Выполнение такой работы требует значительного напряжения кардио-респираторной системы, ответственной за доставку О2 работающим мышцам. По ходу работы непрерывно увеличиваются показатели легочной вентиляции и ЧСС. Весьма значительны изменения кровяного давления.
Реакция со стороны систем вегетативного обслуживания в определенной мере зависит от увеличения показателей анаэробного обмена. Поскольку уровень нагрузки выше порога анаэробного обмена, по ходу выполнения упражнения значительно усиливается выделение «неметаболического излишка» СО2 и накопление молочной кислоты в крови. Квалифицированные спортсмены способны выполнять такого вида непрерывную работу в течение 2,5—3 часов.
Напряженность реакции со стороны систем аэробного обмена в ответ на непрерывную длительную работу заметно увеличивается при переменном режиме упражнения. Причины этого легко понять при анализе динамики биохимических изменений при повторном выполнении упражнений, которые вызывают максимальное увеличение аэробного метаболизма в тканях. При каждом повторении интенсивного упражнения, длительность выполнения которого превышает период врабатывания, уровень потребления 02 быстро нарастает в начале упражнения, а затем поддерживается максимальным вплоть до окончания работы. Общая продолжительность упражнения должна примерно соответствовать времени удержания максимума потребления О2, что обычно составляет от 3 до 6 мин.
Повторение таких серий заставляет организм постоянно работать в режиме переключений, то врабатываясь (в начале выполнения упражнения), то восстанавливаясь (в паузах отдыха). Такие резкие перепады в уровне аэробного метаболизма служат хорошим стимулом для сонастройки и совершенствования деятельности систем вегетативного обслуживания. Поэтому как повторная, так и переменная работа в данном режиме лучше всего способствует повышению аэробной мощности и эффективности.
Объемная тренировка аэробного характера. Обычно после трех дней занятий подряд при любом сочетании разной направленности обнаруживаются ухудшение отставленного эффекта и отрицательные взаимодействия нагрузок. Поэтому после нескольких напряженных тренировок подряд обычно вводят разгрузочные дни, которые позволяют снять излишнее напряжение и обеспечивают более полное восстановление в рамках отдельного тренировочного микроцикла.
Положительные и отрицательные взаимодействия тренировочных нагрузок разной направленности могут иметь место на протяжении длительных периодов тренировки, и тогда они отчетливо проявляются в показателях кумулятивного тренировочного эффекта. Кумулятивный эффект применения нагрузок аэробного воздействия выражается в значительном улучшении показателей аэробной мощности (тах W) при одновременном ухудшении показателей анаэробной емкости (О2-долг).
Вместе с тем кумулятивное воздействие нагрузок гликолитической анаэробной направленности сопровождается улучшением показателей анаэробной емкости, но ведет к заметному ухудшению показателей аэробной мощности. Рациональное сочетание нагрузок разной направленности, при котором, несмотря на возможность проявления отрицательного взаимодействия, удается достигнуть наибольшего прироста спортивных достижений, составляет основу современных методов оптимизации тренировочного процесса. При рациональном построении тренировки (с учетом эффектов взаимодействия нагрузок разной направленности) можно добиться значительного прироста спортивной работоспособности при относительно небольших затратах времени и усилий. Возникновению и закреплению системного структурного следа в процессе долговременной адаптации, обусловленного активацией генетического аппарата и усилением синтеза специфических белков под влиянием физической нагрузки, может способствовать применение в процессе тренировки дополнительных (неспецифических) факторов, действие которых положительно сочетается с тренировочным эффектом нагрузки. В этом случае принято говорить о потенцировании тренировочного эффекта нагрузки
К эффектам взаимодействия нагрузок в процессе долговременной адаптации относится также феномен обусловленности прироста спортивных достижений исходным уровнем развития ведущей функции, достигнутым за счет применения специфических нагрузок на предшествующем этапе подготовки. Так, допустимый объем нагрузок гликолитической анаэробной направленности и прирост показателей максимального О2-долга, обнаруживаемый под влиянием тренировки в беге, зависят от уровня МПК. Обусловленность объема нагрузок достигнутого к началу периода экспериментальной тренировки действия и прироста показателей гликолитического анаэробного воздействия без достаточно выраженного максимальной способности развития максимума аэробной мощности, достигнутого уровня О2-долга нельзя рассчитывать эффект экспериментальной тренировки достижение высоких результатов в беге.
-развитие в красных волокнах (SТ-типа) митохондриального ретикулума, облегчающего передачу энергии внутри клетки,
-возникновение энерготранспортного челнока с участием митохондриального и саркоплазматического изоферментов креатинфосфокиназы,
-повышение сопряженности между процессами окисления и фосфорилирования в митохондриях,
-увеличение количества и относительной активности ферментов аэробного обмена и т. п.
Поскольку красные волокна SТ-типа а получают преимущественное развитие в процессе тренировки в беге на длинные дистанции, естественно полагать, что их специфическая биохимическая адаптация непосредственно скажется на показателях аэробной производительности при беге.
Выбор определенного режима тренировки, как и интенсивность применяемой нагрузки, оказывает прямое влияние на величину и характер биохимической адаптации в скелетных мышцах. Так, непрерывной и после 16 недель экспериментальной тренировки в режиме длительной интервальной работы активность СДГ (одного из ключевых ферментов митохондриального дыхания) в мышцах, несущих основную нагрузку, заметно увеличилась, причем в тесной зависимости от количества выполненной нагрузки. Наибольшая величина СДГ-активности и более высокие темпы ее увеличения были отмечены при интервальном режиме тренировки. Чтобы достичь сходных величин увеличения СДГ-активности в митохондриях работающих мышц при длительной непрерывной работе, необходимо выполнить значительно больший объем нагрузки. Данные, суммирующие результаты многочисленных исследований по изучению специфических изменений, происходящих в скелетных мышцах в ответ на систематическую тренировку с использованием разных типов упражнений, приведены в табл.