
- •Министерство образования и науки Российской Федерации
- •Волгодонский инженерно-технический институт – филиал нияу мифи курс лекций
- •230201 «Информационные системы и технологии»
- •220301 «Автоматизация технологических процессов и производств»
- •Волгодонск
- •1. Алгебра множеств
- •1.1. Понятие множества. Обозначение принадлежности
- •1.2. Способы задания множеств
- •1.3. Множество подмножеств. Включение
- •1.5. Свойства операций над множествами
- •Основные свойства операций над множествами
- •1.6. Декартово произведение множеств
- •2. Отношения
- •Бинарные отношения
- •Способы задания бинарных отношений
- •Области определения и значений
- •Сечения
- •Симметризация отношения
- •2.6 Композиция отношений
- •2.7. Свойства бинарных отношений
- •3. Функциональные отношения
- •3.2. Мощность множества
- •3.3. Образы и прообразы
- •3.4. Подстановки как отображения
- •4. Отношение эквивалентности
- •4.1. Эквивалентность. Классы эквивалентности
- •4.2. Система представителей.
- •4.3. Классы вычетов по модулю т.
- •4.4. Матрица и граф отношения эквивалентности
- •5. Отношение порядка
- •5.1. Упорядоченность
- •5.2. Отношение строгого порядка
- •5.3. Весовые функции
- •5.4. Квазипорядок
- •5.5. Комплексный показатель качества
- •5.6. Структура упорядоченных множеств
- •5.7. Матрицы отношений порядка
- •5.8. Графы отношений порядка
- •6. Законы композиции
- •6.1. Композиция объектов. Таблица Кэли.
- •6.2. Законы композиции на множестве.
- •6.3. Свойства внутреннего закона композиции.
- •6.4. Регулярный, нейтральный и симметричный элементы.
- •6.5. Аддитивные и мультипликативные обозначения.
- •6.6. Алгебраические системы.
- •6.7. Подсистемы.
- •6.8. Делители нуля.
- •Примеры алгебраических систем
- •Группы подстановок
- •7.2. Кольцо многочленов
- •7.3. Кольцо множеств
- •7.4. Множество классов вычетов по модулю т
- •7.5. Поле комплексных чисел
- •7.6. Тело кватернионов
- •8. Пространства
- •Метрические пространства
- •8.2. Топологические пространства
- •8.3. Линейные пространства
- •8.4. Нормированные пространства
- •9. Логические функции
- •9.1. Основные определения
- •9.2. Табличное задание функции
- •9.3. Булевы функции
- •9.4. Зависимость между булевыми функциями
- •10. Алгебра логики
- •10.1.Булева алгебра
- •10.2. Двойственность формул булевой алгебры
- •10.3. Нормальные формы
- •10.4. Совершенные нормальные формы
- •10.5. Проблема разрешимости
- •10.6. Конституенты и представление функций
- •10.7. Алгебра Жегалкина
- •10.8. Канонические многочлены
- •10.9. Типы булевых функций
- •10.10. Функциональная полнота
- •11. Контактные схемы
- •12. Логические схемы
- •13. Минимизация булевых функций
- •14. Конечные автоматы
- •14.1 Основные определения
- •14.2 Состояния
- •14.3 Типы конечных автоматов
- •14.4 Представления конечных автоматов
- •14.5 Анализ конечных автоматов
- •14.6 Минимизация автоматов
- •14.7. Эквивалентное разбиение
- •15. Машины тьюринга
- •15.1 Алфавит, буквы, слова. Операции над словами. Запись слов на бесконечной ленте
- •15.2. Машина Тьюринга. Описание. Примеры машин
- •15.3. Сочетания машин Тьюринга: композиция и объединение. Машины с полулентами, разветвление и итерация машин
- •15.4. Алгоритмически разрешимые и неразрешимые проблемы
- •15.5. Универсальная машина Тьюринга
14.5 Анализ конечных автоматов
Полное описание поведения автомата заключается в определении последовательности выходных сигналов при возбуждении его в тактовые моменты времени некоторой последовательностью входных сигналов. Входная и выходная последовательности представляются наборами символов (или их номеров) из алфавитов Х и Y одинаковой длины l. Для такого описания, кроме характеристических функций, необходимо определить или задать начальное состояние автомата.
Наиболее удобно определять реакцию автомата на входную последовательность по его графу. Для этого достаточно проследить путь в графе, начиная от вершины начального состояния, по направлению дуг, которые отмечены очередными номерами из входной последовательности. Выходная последовательность определяется номерами, которыми отмечены дуги в порядке их следования ни пройденному пути, а последовательность состояний автомата номерами вершин, через которые проходит этот путь.
Так, из графа на рис. 11.2 для входной последовательности (2, 0, 1, 1, 2, 3) и начального состояния 0 имеем выходную последовательность (0, 1, 0, 0, 1, 1) и смену состояний автомата (1, 3, 0, 2, 2, 3). При начальном состоянии 2 и той же входной последовательности получаем соответственно (1, 1, 0, 0, 1, 1) и (2, 3, 0, 2, 2, 3).
С помощью графа автомата легко выделить следующие характерные типы его состояний:
1) преходящее состояние, из которого можно перейти, по крайнем мере, в одно другое состояние, но после этого уже нельзя возвратиться в него ни при каком воздействии (соответствующая вершина не имеет входящих дуг, но имеет хотя бы одну исходящую дугу);
2) тупиковое состояние, в которое можно перейти, по крайней море, из одного другого состояния, но после этого уже нельзя выйти из него ни при каком воздействии (соответствующая вершина не имеет исходящих дуг в другие вершины , но имеет хотя бы одну входящую дугу из другой вершины);
3) изолированное состояние, из которого нельзя перейти ни в какое другое состояние и в него нельзя попасть ни из какого другого состояния (соответствующая вершина содержит только петлю).
Аналогичные определения можно дать для некоторых совокупностей состояний, рассматриваемых как подавтоматы. Если начальное состояние автомата М принадлежит непустому множеству Si состояний, которое составляет тупиковый или изолированный подавтомат, М можно упростить исключением всех состояний, которые не принадлежат множеству Si, и всех дуг, начинающихся в этих состояниях.
Пусть М1, М2 и M3 - соответственно преходящий, тупиковый и изолированный подавтоматы автомата М, которые характеризуются множествами состояний S1, S2 и S3. Очевидно, выделение таких подавтоматов соответствует разбиению множества S состоянии автомата М на непересекающиеся подмножества S1, S2 и S3, представляющие собой классы эквивалентности (S1S2S3 = S и S1S2S3 = ). Как следует из обобщенного графа (рис. 14.3), матрица соединения автомата может быть представлена в виде
где
|
рис.14.3. обобщенный граф конечного автомата |
Отсюда следует, что разбиение автомата М на подавтоматы М1, М2 и M3 можно осуществить преобразованием его матрицы соединений к стандартному виду путем перестановки соответствующих строк и столбцов.
Пример. Для автомата, граф которого изображен на рис. 14.4, имеем:
рис.11.4. Граф конечного автомата
Отсюда следует, что S1 = {3, 6} составляет преходящий подавтомат, S2 = {2, 4, 7} - тупиковый подавтомат и S3 = {1, 5} - изолированный подавтомат. Если начальное состояние принадлежит множеству S2, то можно упростить автомат, исключив состояния S1 S3 = {3, 6, 1, 5}, а в случае принадлежности начального состояния множеству S3 автомат упрощается исключением состояний S1 S2 = {3,6,2,4,7).