
- •Министерство образования и науки Российской Федерации
- •Волгодонский инженерно-технический институт – филиал нияу мифи курс лекций
- •230201 «Информационные системы и технологии»
- •220301 «Автоматизация технологических процессов и производств»
- •Волгодонск
- •1. Алгебра множеств
- •1.1. Понятие множества. Обозначение принадлежности
- •1.2. Способы задания множеств
- •1.3. Множество подмножеств. Включение
- •1.5. Свойства операций над множествами
- •Основные свойства операций над множествами
- •1.6. Декартово произведение множеств
- •2. Отношения
- •Бинарные отношения
- •Способы задания бинарных отношений
- •Области определения и значений
- •Сечения
- •Симметризация отношения
- •2.6 Композиция отношений
- •2.7. Свойства бинарных отношений
- •3. Функциональные отношения
- •3.2. Мощность множества
- •3.3. Образы и прообразы
- •3.4. Подстановки как отображения
- •4. Отношение эквивалентности
- •4.1. Эквивалентность. Классы эквивалентности
- •4.2. Система представителей.
- •4.3. Классы вычетов по модулю т.
- •4.4. Матрица и граф отношения эквивалентности
- •5. Отношение порядка
- •5.1. Упорядоченность
- •5.2. Отношение строгого порядка
- •5.3. Весовые функции
- •5.4. Квазипорядок
- •5.5. Комплексный показатель качества
- •5.6. Структура упорядоченных множеств
- •5.7. Матрицы отношений порядка
- •5.8. Графы отношений порядка
- •6. Законы композиции
- •6.1. Композиция объектов. Таблица Кэли.
- •6.2. Законы композиции на множестве.
- •6.3. Свойства внутреннего закона композиции.
- •6.4. Регулярный, нейтральный и симметричный элементы.
- •6.5. Аддитивные и мультипликативные обозначения.
- •6.6. Алгебраические системы.
- •6.7. Подсистемы.
- •6.8. Делители нуля.
- •Примеры алгебраических систем
- •Группы подстановок
- •7.2. Кольцо многочленов
- •7.3. Кольцо множеств
- •7.4. Множество классов вычетов по модулю т
- •7.5. Поле комплексных чисел
- •7.6. Тело кватернионов
- •8. Пространства
- •Метрические пространства
- •8.2. Топологические пространства
- •8.3. Линейные пространства
- •8.4. Нормированные пространства
- •9. Логические функции
- •9.1. Основные определения
- •9.2. Табличное задание функции
- •9.3. Булевы функции
- •9.4. Зависимость между булевыми функциями
- •10. Алгебра логики
- •10.1.Булева алгебра
- •10.2. Двойственность формул булевой алгебры
- •10.3. Нормальные формы
- •10.4. Совершенные нормальные формы
- •10.5. Проблема разрешимости
- •10.6. Конституенты и представление функций
- •10.7. Алгебра Жегалкина
- •10.8. Канонические многочлены
- •10.9. Типы булевых функций
- •10.10. Функциональная полнота
- •11. Контактные схемы
- •12. Логические схемы
- •13. Минимизация булевых функций
- •14. Конечные автоматы
- •14.1 Основные определения
- •14.2 Состояния
- •14.3 Типы конечных автоматов
- •14.4 Представления конечных автоматов
- •14.5 Анализ конечных автоматов
- •14.6 Минимизация автоматов
- •14.7. Эквивалентное разбиение
- •15. Машины тьюринга
- •15.1 Алфавит, буквы, слова. Операции над словами. Запись слов на бесконечной ленте
- •15.2. Машина Тьюринга. Описание. Примеры машин
- •15.3. Сочетания машин Тьюринга: композиция и объединение. Машины с полулентами, разветвление и итерация машин
- •15.4. Алгоритмически разрешимые и неразрешимые проблемы
- •15.5. Универсальная машина Тьюринга
10.3. Нормальные формы
Дизъюнктивная (конъюнктивная) нормальная форма - это дизъюнкция (конъюнкция) конечного числа различных членов, каждый из которых представляет собой конъюнкцию (дизъюнкцию) отдельных переменных или их отрицаний, входящих в данный член не более одного раза.
Функция приводится к нормальной форме следующим путем: 1) с помощью законов де Моргана формула преобразуется к такому виду, чтобы знаки отрицания относились только к отдельным переменным; 2) на основе первого (второго) дистрибутивного закона формула сводится к дизъюнкции конъюнкций (конъюнкции дизъюнкций); 3) полученное выражение упрощается и соответствии с тождествами и ( и ).
Пример:
- дизъюнктивная
нормальная форма (ДНФ).
- конъюнктивная
нормальная форма (КНФ).
Члены дизъюнктивной
(конъюнктивной) нормальной формы,
представляющие собой элементарные
конъюнкции (дизъюнкции) k
букв, называют минитермами
(макстермами) k-го
ранга. Так, в приведенных выше формах
ху - минитерм
второго ранга, хуг
- минитерм
третьего ранга, а
- макстерм
второго ранга.
Если исходная формула содержит другие операции, то они предварительно выражаются через дизъюнкцию, конъюнкцию и отрицание, например:
Пример:
10.4. Совершенные нормальные формы
Если в каждом члене нормальной формы представлены все переменные (либо в прямом, либо в инверсном виде), то она называется совершенной нормальной формой.
Можно показать,
что любая булева функция, не являющаяся
тождественным нулем (единицей), имеет
одну и только одну совершенную
дизъюнктивную (конъюнктивную) нормальную
форму. Если какой-либо член
дизъюнктивной (конъюнктивной) нормальной
формы не содержит переменной х,
то она вводится тождественным
преобразованием
= (
)
= х
(соответственно
=
=(
х)(
)).
В силу тождеств
=
и
=
одинаковые члены, если они появляются,
заменяются одним таким членом.
Продолжая второй пример, приведем данную функцию к совершенной дизъюнктивной нормальной форме:
Приведение к совершенной конъюнктивной нормальной форме иллюстрируется следующим примером:
10.5. Проблема разрешимости
Формула (или соответствующая ей функция) называется выполнимой, если она не является тождественным нулем или единицей. Решение с помощью конечного числа действий вопроса, является ли данная формула выполнимой, т. е. не равна ли она тождественно нулю или единице, носит название проблемы разрешимости.
Ответ на этот вопрос можно получить, построив для данной формулы таблицу соответствия, что сводится по существу к определению значений формулы при всевозможных наборах значении входящих в нее переменных. Если на всех наборах формула принимает значения только 0 или только 1, то она невыполнима.
При большом количестве переменных такой способ практически неосуществим из-за огромного числа возможных наборов значений переменных. Более удобный путь - приведение формулы к нормальной форме. Если в процессе такого приведения формула не обращается в тождественный 0 или 1, то это свидетельствует о ее выполнимости.