
- •Министерство образования и науки Российской Федерации
- •Волгодонский инженерно-технический институт – филиал нияу мифи курс лекций
- •230201 «Информационные системы и технологии»
- •220301 «Автоматизация технологических процессов и производств»
- •Волгодонск
- •1. Алгебра множеств
- •1.1. Понятие множества. Обозначение принадлежности
- •1.2. Способы задания множеств
- •1.3. Множество подмножеств. Включение
- •1.5. Свойства операций над множествами
- •Основные свойства операций над множествами
- •1.6. Декартово произведение множеств
- •2. Отношения
- •Бинарные отношения
- •Способы задания бинарных отношений
- •Области определения и значений
- •Сечения
- •Симметризация отношения
- •2.6 Композиция отношений
- •2.7. Свойства бинарных отношений
- •3. Функциональные отношения
- •3.2. Мощность множества
- •3.3. Образы и прообразы
- •3.4. Подстановки как отображения
- •4. Отношение эквивалентности
- •4.1. Эквивалентность. Классы эквивалентности
- •4.2. Система представителей.
- •4.3. Классы вычетов по модулю т.
- •4.4. Матрица и граф отношения эквивалентности
- •5. Отношение порядка
- •5.1. Упорядоченность
- •5.2. Отношение строгого порядка
- •5.3. Весовые функции
- •5.4. Квазипорядок
- •5.5. Комплексный показатель качества
- •5.6. Структура упорядоченных множеств
- •5.7. Матрицы отношений порядка
- •5.8. Графы отношений порядка
- •6. Законы композиции
- •6.1. Композиция объектов. Таблица Кэли.
- •6.2. Законы композиции на множестве.
- •6.3. Свойства внутреннего закона композиции.
- •6.4. Регулярный, нейтральный и симметричный элементы.
- •6.5. Аддитивные и мультипликативные обозначения.
- •6.6. Алгебраические системы.
- •6.7. Подсистемы.
- •6.8. Делители нуля.
- •Примеры алгебраических систем
- •Группы подстановок
- •7.2. Кольцо многочленов
- •7.3. Кольцо множеств
- •7.4. Множество классов вычетов по модулю т
- •7.5. Поле комплексных чисел
- •7.6. Тело кватернионов
- •8. Пространства
- •Метрические пространства
- •8.2. Топологические пространства
- •8.3. Линейные пространства
- •8.4. Нормированные пространства
- •9. Логические функции
- •9.1. Основные определения
- •9.2. Табличное задание функции
- •9.3. Булевы функции
- •9.4. Зависимость между булевыми функциями
- •10. Алгебра логики
- •10.1.Булева алгебра
- •10.2. Двойственность формул булевой алгебры
- •10.3. Нормальные формы
- •10.4. Совершенные нормальные формы
- •10.5. Проблема разрешимости
- •10.6. Конституенты и представление функций
- •10.7. Алгебра Жегалкина
- •10.8. Канонические многочлены
- •10.9. Типы булевых функций
- •10.10. Функциональная полнота
- •11. Контактные схемы
- •12. Логические схемы
- •13. Минимизация булевых функций
- •14. Конечные автоматы
- •14.1 Основные определения
- •14.2 Состояния
- •14.3 Типы конечных автоматов
- •14.4 Представления конечных автоматов
- •14.5 Анализ конечных автоматов
- •14.6 Минимизация автоматов
- •14.7. Эквивалентное разбиение
- •15. Машины тьюринга
- •15.1 Алфавит, буквы, слова. Операции над словами. Запись слов на бесконечной ленте
- •15.2. Машина Тьюринга. Описание. Примеры машин
- •15.3. Сочетания машин Тьюринга: композиция и объединение. Машины с полулентами, разветвление и итерация машин
- •15.4. Алгоритмически разрешимые и неразрешимые проблемы
- •15.5. Универсальная машина Тьюринга
8.2. Топологические пространства
Пусть Х - некоторое множество - пространство-носитель. Топологией в Х называется любая система τ его подмножеств G, удовлетворяющая следующим требованиям:
1. Само множество Х и пустое множество принадлежат .
2. Объединение
любого (конечного или бесконечного)
числа множеств из τ принадлежит τ.
3. пересечение
любого конечного числа множеств из τ
принадлежит τ.
Множество Х с заданной в нем топологией τ, т.е. пара (X, τ), называется топологическим пространством.
Множества, принадлежащие системе τ, называются открытыми.
Так же как метрическое пространство есть совокупность множества точек - «носителя» - и введенной в этом множестве метрики, топологическое пространство есть совокупность множества точек и введенной в нем топологии. Таким образом, задать топологическое пространство - это значит задать некоторое множество Х и задать в нем топологию τ, т. е. указать те подмножества, которые считаются в Х открытыми.
Ясно, что в одном и том же множестве Х можно вводить разные топологии, превращая его тем самым н различные топологические пространства. И все же топологическое пространство, т. е. пару (Х, τ), мы будем обозначать одной буквой, скажем, Т.
Элементы топологического пространства мы будем называть точками.
Множества Т - G, дополнительные к открытым, называются замкнутыми множествами топологического пространства Т. Из аксиом 1 и 2 в силу соотношений двойственности вытекает, что:
1. Пустое множество и все Т замкнуты.
2. Пересечение любого (конечного или бесконечного) числа и сумма конечного числа замкнутых множеств замкнуты.
На основе этих определений во всяком топологическом пространстве вводятся понятия окрестности, точки прикосновения, замыкания множества и др.
Окрестностью точки х Т называется всякое открытое множество G Т, содержащее точку х. точка х Т называется точкой прикосновения множества М Т, если каждая окрестность точки х содержит хотя бы одну точку из М; х называется предельной точкой множества М, если каждая окрестность точки х содержит хотя бы одну точку из М, отличную от х. Совокупность точек прикосновения множества М называется замыканием множества М и обозначается символом [М]. Легко доказать, что замкнутые множества (определенные нами выше как дополнения открытых), и только они, удовлетворяют условию [М] = М. [М] есть наименьшее замкнутое множество, содержащее М.
Рассмотрим примеры топологических пространств.
1. Пусть Т - произвольное множество. Будем считать открытыми все его подмножества. Аксиомы 1 и 2 при этом, очевидно, выполнены, т. е. мы действительно получаем топологическое пространство. В нем все множества одновременно и открыты и замкнуты, и, значит, каждое из них совпадает со своим замыканием. Такой дискретной топологией обладает, например, метрическое пространство, указанное в примере 1 п. 1.
2. В качестве другого крайнего случая рассмотрим в произвольном множестве Т тривиальную топологию, состоящую всего из двух множеств: всего Т и пустого множества . Здесь замыкание каждого непустого множества есть все Т. Такое топологическое пространство можно назвать «пространством слипшихся точек».
3. Пусть Т состоит из двух точек а и b, причем открытыми множествами мы считаем все Т, пустое множество и множество, состоящее из одной точки b. Аксиомы 1 и 2 здесь выполнены. В этом пространстве (которое часто называют связным двоеточием) замкнуты такие подмножества: все Т, пустое множество и точка а. Замыкание одноточечного множества [b] есть все Т.
4. Во всяком метрическом пространстве можно ввести топологию, взяв в качестве базы открытых множеств -окрестности точек х этого пространства: