
- •Министерство образования и науки Российской Федерации
- •Волгодонский инженерно-технический институт – филиал нияу мифи курс лекций
- •230201 «Информационные системы и технологии»
- •220301 «Автоматизация технологических процессов и производств»
- •Волгодонск
- •1. Алгебра множеств
- •1.1. Понятие множества. Обозначение принадлежности
- •1.2. Способы задания множеств
- •1.3. Множество подмножеств. Включение
- •1.5. Свойства операций над множествами
- •Основные свойства операций над множествами
- •1.6. Декартово произведение множеств
- •2. Отношения
- •Бинарные отношения
- •Способы задания бинарных отношений
- •Области определения и значений
- •Сечения
- •Симметризация отношения
- •2.6 Композиция отношений
- •2.7. Свойства бинарных отношений
- •3. Функциональные отношения
- •3.2. Мощность множества
- •3.3. Образы и прообразы
- •3.4. Подстановки как отображения
- •4. Отношение эквивалентности
- •4.1. Эквивалентность. Классы эквивалентности
- •4.2. Система представителей.
- •4.3. Классы вычетов по модулю т.
- •4.4. Матрица и граф отношения эквивалентности
- •5. Отношение порядка
- •5.1. Упорядоченность
- •5.2. Отношение строгого порядка
- •5.3. Весовые функции
- •5.4. Квазипорядок
- •5.5. Комплексный показатель качества
- •5.6. Структура упорядоченных множеств
- •5.7. Матрицы отношений порядка
- •5.8. Графы отношений порядка
- •6. Законы композиции
- •6.1. Композиция объектов. Таблица Кэли.
- •6.2. Законы композиции на множестве.
- •6.3. Свойства внутреннего закона композиции.
- •6.4. Регулярный, нейтральный и симметричный элементы.
- •6.5. Аддитивные и мультипликативные обозначения.
- •6.6. Алгебраические системы.
- •6.7. Подсистемы.
- •6.8. Делители нуля.
- •Примеры алгебраических систем
- •Группы подстановок
- •7.2. Кольцо многочленов
- •7.3. Кольцо множеств
- •7.4. Множество классов вычетов по модулю т
- •7.5. Поле комплексных чисел
- •7.6. Тело кватернионов
- •8. Пространства
- •Метрические пространства
- •8.2. Топологические пространства
- •8.3. Линейные пространства
- •8.4. Нормированные пространства
- •9. Логические функции
- •9.1. Основные определения
- •9.2. Табличное задание функции
- •9.3. Булевы функции
- •9.4. Зависимость между булевыми функциями
- •10. Алгебра логики
- •10.1.Булева алгебра
- •10.2. Двойственность формул булевой алгебры
- •10.3. Нормальные формы
- •10.4. Совершенные нормальные формы
- •10.5. Проблема разрешимости
- •10.6. Конституенты и представление функций
- •10.7. Алгебра Жегалкина
- •10.8. Канонические многочлены
- •10.9. Типы булевых функций
- •10.10. Функциональная полнота
- •11. Контактные схемы
- •12. Логические схемы
- •13. Минимизация булевых функций
- •14. Конечные автоматы
- •14.1 Основные определения
- •14.2 Состояния
- •14.3 Типы конечных автоматов
- •14.4 Представления конечных автоматов
- •14.5 Анализ конечных автоматов
- •14.6 Минимизация автоматов
- •14.7. Эквивалентное разбиение
- •15. Машины тьюринга
- •15.1 Алфавит, буквы, слова. Операции над словами. Запись слов на бесконечной ленте
- •15.2. Машина Тьюринга. Описание. Примеры машин
- •15.3. Сочетания машин Тьюринга: композиция и объединение. Машины с полулентами, разветвление и итерация машин
- •15.4. Алгоритмически разрешимые и неразрешимые проблемы
- •15.5. Универсальная машина Тьюринга
6.2. Законы композиции на множестве.
Множества А,
В, С,
участвующие в композиции
,
не обязательно
должны быть различными. Если
,
то говорят, что закон композиции определен
на множестве S.
Различают внутренний
закон композиции
и
внешний
закон композиции
,
где Ω и S
- различные множества. В случае внутреннего
закона говорят, что множество образует
группоид
относительно операции ┬. В случае
внешнего закона композиции элементы
называют операторами,
а Ω - множеством
операторов
на множестве S.
Примерами внутреннего закона композиции являются сложение и умножение на множестве действительных чисел, а также геометрическое суммирование векторов на плоскости или в пространстве. Умножение вектора на скаляр может служить примером внешнего закона композиции на множестве векторов, причем операторами являются скаляры - элементы множества действительных чисел.
6.3. Свойства внутреннего закона композиции.
Операции на множестве S могут обладать некоторыми общими свойствами, которые обычно выражаются соотношениями между элементами из S:
коммутативность a┬b=b┬a;
ассоциативность а┬(b┬с)=(а┬b)┬с;
дистрибутивность слева (а┬b)┴с = (a┴с)┬(b┴с)
и справа с┴(a┬b)=(с┴а)┬(с┴b).
На множестве
действительных чисел сложение и умножение
ассоциативны и коммутативны. Умножение
дистрибутивно (слева и справа) относительно
сложения, но сложение не дистрибутивно
относительно умножения. Возведение в
степень не ассоциативно (
),
не коммутативно (
),
но дистрибутивно справа относительно
умножения, так как
.
Пересечение и объединение множеств
взаимно дистрибутивны относительно
друг друга. Если в множестве F
S
композиция любых двух элементов из F
также при
надлежит F,
то F
называется замкнутым
относительно рассматриваемого закона
композиции (подмножество четных чисел
является замкнутым относительно сложения
и умножения).
6.4. Регулярный, нейтральный и симметричный элементы.
Закон композиции наделяет элементы множества некоторыми общими свойствами. При различных законах одни и те же элементы могут обладить различными свойствами. Поэтому имеет смысл говорить о свойствах элементов множества S относительно заданного на нем закона композиции ┬.
Элемент а называется регулярным, если из соотношений а┬х = а┬у и х┬а = у┬а следует х = у (сокращение на регулярный элемент). Всякое число регулярно относительно сложения. а для умножения регулярно всякое число, кроме нуля (0х = 0у не влечет х = у).
Нейтральным элементом е S называют такой элемент, что для всех элементов х S справедливо е┬х = х┬е = х (если нейтральный элемент существует, то он единственен и регулярен). Среди чисел нуль - нейтральный элемент относительно сложения, а единица - относительно умножения. Пустое множество является нейтральным элементом относительно объединения, а основное множество (универсум) - относительно пересечения. На множестве всех квадратных матриц п-го порядка с числовыми элементами ну левая и единичная матрицы служат соответственно нейтральными элементами относительно сложения и умножения.
Если множество
содержит нейтральный элемент е
относительно закона композиции ┬, то
элемент b
называется симметричным
(обратным, противоположным)
элементу а,
если а
┬ b
= b
┬ а = е,
при этом а
называют симметризуемым
элементом и b
обозначается через
,
т.е.
.
Относительно ассоциативного закона
элемент
,
симметричный элементу а
(если он существует), единственен и
регулярен.
При сложении симметричным некоторому числу х будет -х, а при умножении х-1. Например, симметричными элементами на множестве квадратных матриц п-го порядка относительно умножения являются взаимно-обратные матрицы. Множество всех собственных подмножеств относительно объединения или пересечения не содержит симметричных элементов. Множество, в котором всякий элемент имеет симметричный, называется симметризуемым.