
- •1.Предмет и задачи астрономии. Разделы астрономии.Классические и современные методы астрономических исследований.
- •2.Основные этапы развития астрономии.
- •3.Небесная сфера. Основные плоскости, линии и точкинебесной сферы.
- •4.Системы небесных координат (горизонтальная, первая ивторая экваториальные, эклиптическая).
- •5.Суточное вращение небесной сферы на разных широтах исвязанные с ним явления. Суточное движение Солнца. Смена сезонов и тепловыепояса.
- •6.Основные формулы сферической тригонометрии.Параллактический треугольник и преобразование координат.
- •7.Звёздное, истинное и среднее солнечное время. Связьвремён. Уравнение времени.
- •8.Системы счёта времени: местное, поясное, всемирное, декретное и эфемеридное время.
- •9.Календарь. Типы календарей. История современного календаря. Юлианские дни.
- •10.Рефракция.
- •11.Суточная и годичная аберрация.
- •12.Суточный,годичный и вековой параллакс светил.
- •13.Определениерасстояний в астрономии, линейных размеров тел солнечной системы.
- •14.Собственноедвижение звёзд.
- •15.Лунно-солнечная и планетарная прецессия; нутация.
- •16. Неравномерность вращения Земли; движение полюсов Земли. Служба широты.
- •17.Измерение времени. Поправка часов и ход часов. Служба времени.
- •18. Методы определения географической долготы местности.
- •19. Методы определения географической широты местности.
- •20.Методы определения координат и положений звёзд ( и ).
- •21. Вычисление моментов времени и азимутов восхода и захода светил.
- •24.ЗаконыКеплера. Третий (уточнённый) закон Кеплера.
- •26.Задача трех и более тел. Частный случай зачачи трех тел( точки либрации Лагранжа)
- •27.Понятиео возмущающей силе. Устойчивость Солнечной системы.
- •1. Понятие о возмущающей силе.
- •28.ОрбитаЛуны.
- •29. Приливы и отливы
- •30.Движение космических аппаратов. Три космические скорости.
- •31.ФазыЛуны.
- •32.Солнечныеи лунные затмения. Условия наступления затмения. Сарос.
- •33.ЛибрацииЛуны.
- •34.Спектрэлектромагнитного излучения, исследуемый в астрофизике. Прозрачность атмосферыЗемли.
- •35.Механизмы излучения космических тел в разных диапазонах спектра. Виды спектра: линейчатыйспектр, непрерывный спектр, рекомбинационное излучение.
- •36 Астрофотометрия. Звёздная величина (визуальная и фотографическая).
- •37 Свойства излучения и основы спектрального анализа: законы Планка, Рэлея-Джинса, Стефана-Больцмана, Вина.
- •38 Доплеровское смещение. Закон Доплера.
- •39 Методы определения температуры. Виды понятий температуры.
- •40.Методы и основные результаты изучения формы Земли. Геоид.
- •41 Внутреннее строение Земли.
- •42.Атмосфера Земли
- •43.Магнитосфера Земли
- •44.Общие сведения о Солнечной системе и её исследований
- •45.Физический характер Луны
- •46.Планеты земной группы
- •47.Планеты гиганты –их спутники
- •48.Малые планеты-астероиды
- •50. Основные физические характеристики Солнца.
- •51. Спектр и химический состав Солнца. Солнечная постоянная.
- •52. Внутреннее строение Солнца
- •53. Фотосфера. Хромосфера. Корона. Грануляция и конвективная зона Зодиакальный свет и противосияние.
- •54 Активные образования в солнечной атмосфере. Центры солнечной активности.
- •55. Эволюция Солнца
- •57.Абсолютная звёздная величина и светимость звёзд.
- •58.Диаграмма спектр-светимость Герцшпрунга-Рессела
- •59. Зависимость радиус — светимость — масса
- •60. Модели строения звёзд. Строение вырожден звёзд (бел карлики и нейтрон звёзды). Чёрн.Дыры.
- •61. Основные этапы эволюции звезд. Планетарные туманности.
- •62. Кратные и переменные звёзды (кратные, визуально-двойные, спектрально-двойные звёзды, невидимые спутники звёзд, затменно-двойные звёзды). Особенности строения тесных двойных систем.
- •63.Физические переменные звёзды (пульсирующие переменные; эруптивные переменные: в начале эволюции, новые, сверхновые; пульсары, нейтронные звёзды). Рентгеновские источники излучения.
- •64. Методы определения расстояний до звёзд. Конецформыначалоформы
- •65.Распределение звёзд в Галактике. Скопления. Общее строение Галактики.
- •66. Пространственное перемещение звёзд. Вращение Галактики.
- •68. Классификация галактик.
- •69.Определение расстояний до галактик. Закон Хаббла. Красное смещение в спектрах галактик.
36 Астрофотометрия. Звёздная величина (визуальная и фотографическая).
Звездной величиной m называется взятый со знаком минус логарифм по основанию 2,512 от освещенности Е, создаваемой данным объектом на площадке, перпендикулярной к лучам. Звездная величина солнца -26,8 Луны -12,7. Связь между звездными величинами и освещенностями выражается формулой Погсона: m1-m1=-2.5 * lg(E1/E2), где m1 и m1 , Е1,Е2– звездные величины 2 светящихся объектов и их освещенности. Для удаленных объектов справедлива формула: Е=В* Ω, где В – яркость объекта, Ω – телесный угол, под которым он виден ан небесной сфере. Звездная величина М называется абсолютной, если объект находится на раст 10 пк. Тогда М=m+5-5*lgr, где r – расстояние до объекта в парсеках. Светимостью звезды L ?называется поток энергии, излучаемый звездой по всем направлениям. Светимость L и абсолютная величина М связаны: М1-М2 = -2.5 * lg (L1/l2). В зависимости от спектрального состава излучения и типа фотоприемника различные величины, измеренные в разных спектральных интервалах, даже одного и того же объекта могут не совпадать. Связь между ними может быть выражена с помощью специальных соотношений и таблиц. Наиболее известная 12-цветная фотометрическая система Джонсона. ВИЗУАЛЬНАЯ ЗВЕЗДНАЯ величина (mn) - звездная величина, определяемая прямым наблюдением и отвечающая спектральной чувствительности человеческого глаза (максимум чувствительности приходится на длину волны 0,55 мкм).
37 Свойства излучения и основы спектрального анализа: законы Планка, Рэлея-Джинса, Стефана-Больцмана, Вина.
Анализ изучения
— наиболее важный астрофизический
метод; с его помощью получена основная
часть наших знаний о космических
объектах.Излучательная способность
абсолютно черного тела может быть
вычислена по формуле Планка
Излучательная
способность el определяется так, что
произведение el dl равно потоку,
излучаемому 1 см2 поверхности тела по
всем направлениям, в интервале спектра
от l до l + dl . Поэтому ее
размерность составляет эрг/см2× сек×
см = эрг/см3× сек. Если выражение разделить
на p, то получится яркость
излучающей поверхности.
Все планковские кривые имеют заметно
выраженный максимум, приходящийся на
длину волны
max=0,290
см * град / Т если ее выражать в сантиметрах.
Это закон смещения максимума излучения
Вина: с увеличением температуры максимум
излучения абсолютно черного тела
смещается в коротковолновую область
спектра. По мере увеличения температуры
меняется не только цвет излучения, но
и его мощность. Мощность излучения
абсолютно черного тела пропорциональна
четвертой степени температуры (закон
Стефана — Больцмана). Каждый квадратный
сантиметр поверхности абсолютно черного
тела излучает за 1 сек по всем направлениям
во всех длинах волн энергию e = sT 4,
где s = 5,67×10 -5 эрг/сек× см2× град4 — постоянная Стефана — Больцмана. Поскольку e дает поток излучения, оно имеет размерность эрг/см2× сек и численно равно площади, ограниченной кривой Планка и осью абсцисс. По обе стороны от максимума Излучательная способность, описываемая формулой Планка, убывает по-разному. В области коротких волн (фиолетовый конец спектра) знаменатель второго сомножителя в формуле Планка велик, и единицей можно пренебречь. Тогда получаем формулу Вина
описывающую очень
крутое падение излучательной способности
у фиолетового конца спектра. Формула
Планка переходит в формулу Рэлея —
Джинса:
Таким образом,
в длинноволновой части спектра
излучательная способность пропорциональна
температуре. Пропорциональность потока
излучения температуре позволяет выражать
интенсивность наблюдаемого радиоизлучения
через температуру абсолютно черного
тела, имеющего такую же лучеиспускательную
способность. Возникновение линейчатых
спектров связано с беспрестанно
меняющейся внутренней энергией атомов,
то поглощающих, то вновь излучающих
энергию.