
- •1)Основные причины наличия в регрессионной модели случайного отклонения.
- •2)Основные этапы регрессионного анализа.
- •3)Спецификация модели, каким образом она осуществляется?
- •4)Стандартная ошибка регрессии Sxy.
- •5)Различие между теоретическим и эмпирическим уравнениями регрессии.
- •10)Доверительный интервал для предсказания индивидуальных значений зависимой переменной.
- •11)Каким образом определяется модель множественной линейной регрессии?
- •12)Предпосылки мнк. Каковы последствия их невыполнимости?
- •1°. Математическое ожидание случайного отклонения равно нулю для всех наблюдений:
- •4°. Случайное отклонение должно быть независимо от объясняющих переменных.
- •13)Характеристика коэффициентов уравнения регрессии.
- •14)Суть мнк для построения множественного линейного уравнения регрессии.
- •15)Статистическая значимость коэффициентов регрессии.
- •16)Интервальные оценки коэффициентов регрессии
- •17)Коэффициент детерминации r2. Отличие скорректированного коэффициента детерминации от обычного.
- •18)Анализ статистической значимости коэффициента детерминации r2.
- •19)Как используется f-статистика в регрессионном анализе?(Ответ в предыдущем вопросе)
- •20)Проверка общего качества уравнения регрессию
- •21)Автокорреляцией остатков и ее виды.
- •22)Статистика Дарбина–Уотсона. Формула расчета. Суть показателя.
- •28)Определениие мультиколлинеарности. Признаки наличия мультиколлинеарности.
- •29)Методы проверки наличия мультиколлиниарности. Показатель vif – «фактор инфляции вариации»
- •30)Методы устранения мультиколлинеарности.
- •31)Гетероскедастичность. Последствия гетероскедастичности.
- •32)Методы смягчения гетероскедастичности
- •33)Автокорреляция. Основные причины автокорреляции.
- •34)Последствия автокорреляции. Основные методы обнаружения автокорреляции.
- •35)Спецификация модели
- •36)Основные признаки качественной регрессионной модели.
- •37)Основные виды ошибок спецификации.
- •1. Отбрасывание значимой переменной
- •2. Добавление незначимой переменной
- •38)Обнаружение и корректировка ошибок спецификации
- •39)Проблемы спецификации
- •40)Необходимость использования фиктивных переменных в регрессионных уравнениях
- •41)Использование фиктивных переменных для сезонного анализа
41)Использование фиктивных переменных для сезонного анализа
Фиктивные переменные также могут быть использованы для учета сезонности. Многие экономические показатели напрямую связаны с сезонными колебаниями. Например, спрос на туристические путевки, охлажденную воду и мороженное существенно выше летом, чем зимой. Спрос на обогреватели и шубы выше зимой, чем летом. Некоторые показатели имеют существенные квартальные колебания.
Обычно сезонные колебания характерны для временных рядов. Устранение или нейтрализация сезонного фактора в таких моделях позволяет сконцентрироваться на других важных количественных и качественных характеристиках модели, в частности на общем направлении развития модели, так называемом тренде. Такое устранение сезонного фактора называется сезонной корректировкой. Существует несколько методов сезонной корректировки, одним из которых является метод фиктивных переменных.
Пусть переменная У определяется количественной переменной Х, причем эта зависимость существенно разнится по кварталам. Тогда общую модель в этой ситуации можно представить в виде:
Заметим, что число кварталов равно четырем, а следовательно число фиктивных переменных должно быть равно трем. В нашем примере в качестве базы выбран I квартал. Если значения У существенно различаются по кварталам(сезонам), то в уравнении (11.19) коэффициенты при фиктивных переменных окажутся статистически значимыми. Тогда ожидаемое значение У по кварталам определяется следующими соотношениями:
Легко видеть, что в модели (11.19) рассматриваются такие ситуации, при которых квартальные различия отражаются лишь в различии свободных членов моделей. Если же различия затрагивают и изменения коэффициента пропорциональности, то это может быть отражено след.моделью:
Выбор правильной формы модели регрессии является в данной ситуации достаточно серьезной проблемой т.к. в этом случае вполне вероятны ошибки спецификации. Наиболее рациональной практической стратегией модели является следующая схема: вначале рассматривается модель (11.20). определяется статистическая значимость коэффициентов.
- если дифференциальные угловые коэффициенты оказываются статистически незначимы,то переходят к модели (11.19);
- если в модели (11.19) дифференциальные свободные члены оказываются статистически незначимыми, то делают вывод, что квартальные (сезонные) изменения несущественны для рассматриваемой зависимости.