
- •1)Основные причины наличия в регрессионной модели случайного отклонения.
- •2)Основные этапы регрессионного анализа.
- •3)Спецификация модели, каким образом она осуществляется?
- •4)Стандартная ошибка регрессии Sxy.
- •5)Различие между теоретическим и эмпирическим уравнениями регрессии.
- •10)Доверительный интервал для предсказания индивидуальных значений зависимой переменной.
- •11)Каким образом определяется модель множественной линейной регрессии?
- •12)Предпосылки мнк. Каковы последствия их невыполнимости?
- •1°. Математическое ожидание случайного отклонения равно нулю для всех наблюдений:
- •4°. Случайное отклонение должно быть независимо от объясняющих переменных.
- •13)Характеристика коэффициентов уравнения регрессии.
- •14)Суть мнк для построения множественного линейного уравнения регрессии.
- •15)Статистическая значимость коэффициентов регрессии.
- •16)Интервальные оценки коэффициентов регрессии
- •17)Коэффициент детерминации r2. Отличие скорректированного коэффициента детерминации от обычного.
- •18)Анализ статистической значимости коэффициента детерминации r2.
- •19)Как используется f-статистика в регрессионном анализе?(Ответ в предыдущем вопросе)
- •20)Проверка общего качества уравнения регрессию
- •21)Автокорреляцией остатков и ее виды.
- •22)Статистика Дарбина–Уотсона. Формула расчета. Суть показателя.
- •28)Определениие мультиколлинеарности. Признаки наличия мультиколлинеарности.
- •29)Методы проверки наличия мультиколлиниарности. Показатель vif – «фактор инфляции вариации»
- •30)Методы устранения мультиколлинеарности.
- •31)Гетероскедастичность. Последствия гетероскедастичности.
- •32)Методы смягчения гетероскедастичности
- •33)Автокорреляция. Основные причины автокорреляции.
- •34)Последствия автокорреляции. Основные методы обнаружения автокорреляции.
- •35)Спецификация модели
- •36)Основные признаки качественной регрессионной модели.
- •37)Основные виды ошибок спецификации.
- •1. Отбрасывание значимой переменной
- •2. Добавление незначимой переменной
- •38)Обнаружение и корректировка ошибок спецификации
- •39)Проблемы спецификации
- •40)Необходимость использования фиктивных переменных в регрессионных уравнениях
- •41)Использование фиктивных переменных для сезонного анализа
38)Обнаружение и корректировка ошибок спецификации
Если в уравнении регрессии имеется одна несущественная переменная, то она обнаружит себя по низкой t-статистике. В дальнейшем эту переменную исключают из рассмотрения.
Если в уравнении несколько статистически незначимых объясняющих переменных, то следует построить другое уравнение регрессии без этих незначимых переменных. Затем с помощью F-статистики сравниваются коэффициенты детерминации для первоначального и дополнительного уравнений регрессий:
Здесь п — число наблюдений, т — число объясняющих переменных в первоначальном уравнении, k — число отбрасываемых из первоначального уравнения объясняющих переменных.
При наличии нескольких несущественных переменных, возможно, имеет место мультиколлинеарность. Однако осуществление указанных проверок имеет смысл лишь при правильном подборе вида (функциональной формы) уравнения регрессии, что можно осуществить, если согласовывать его с теорией.
Выбор модели далеко не всегда осуществляется однозначно, и в дальнейшем требуется сравнивать модель как с теоретическими, так и с эмпирическими данными, совершенствовать ее. При определении качества модели обычно анализируются следующие параметры:
скорректированный коэффициент детерминации
t-статистики
Дарбина—Уотсона dw
согласованность знаков коэффициентов с теорией
прогнозные качества (ошибки) модели
Если все эти показатели удовлетворительны, то данная модель может быть предложена для описания исследуемого реального процесса. Если же какая-либо из описанных выше характеристик не является удовлетворительной, то есть основания сомневаться в качестве данной модели (неправильно выбрана функциональная форма уравнения; не учтена важная объясняющая переменная; имеется объясняющая переменная, не оказывающая значимого влияния на зависимую переменную).
Для более детального анализа адекватности модели может быть предложено исследование остаточного члена модели.
39)Проблемы спецификации
40)Необходимость использования фиктивных переменных в регрессионных уравнениях
Иногда необходимо включение в регрессионную модель одной или более качественных переменных (например, разделение по полу: мужской и женский; по уровню образования: общее и профессиональное и т.д.). Альтернативно может понадобиться сделать качественное различие между наблюдениями однмих и тех же данных. Так, если проверяется взаимосвязь между размером компании и месячными доходами по акциям, может быть желательным включение качественной переменной, представляющей месяц январь, по причине хорошо известного «январского эффекта» во временных рядах доходов по ценным бумагам. Данный «январский эффект» - это феномен, заключающийся в том, что средние доходы по акциям, особенно небольших компаний, в среднем выше в январе, чем в другие месяцы. Таким образом, если мы рассматриваем январские наблюдения как качественно отличные от других наблюдений, фиктивная переменная (D) позволит произвести подобное качественное различие.