
- •1)Основные причины наличия в регрессионной модели случайного отклонения.
- •2)Основные этапы регрессионного анализа.
- •3)Спецификация модели, каким образом она осуществляется?
- •4)Стандартная ошибка регрессии Sxy.
- •5)Различие между теоретическим и эмпирическим уравнениями регрессии.
- •10)Доверительный интервал для предсказания индивидуальных значений зависимой переменной.
- •11)Каким образом определяется модель множественной линейной регрессии?
- •12)Предпосылки мнк. Каковы последствия их невыполнимости?
- •1°. Математическое ожидание случайного отклонения равно нулю для всех наблюдений:
- •4°. Случайное отклонение должно быть независимо от объясняющих переменных.
- •13)Характеристика коэффициентов уравнения регрессии.
- •14)Суть мнк для построения множественного линейного уравнения регрессии.
- •15)Статистическая значимость коэффициентов регрессии.
- •16)Интервальные оценки коэффициентов регрессии
- •17)Коэффициент детерминации r2. Отличие скорректированного коэффициента детерминации от обычного.
- •18)Анализ статистической значимости коэффициента детерминации r2.
- •19)Как используется f-статистика в регрессионном анализе?(Ответ в предыдущем вопросе)
- •20)Проверка общего качества уравнения регрессию
- •21)Автокорреляцией остатков и ее виды.
- •22)Статистика Дарбина–Уотсона. Формула расчета. Суть показателя.
- •28)Определениие мультиколлинеарности. Признаки наличия мультиколлинеарности.
- •29)Методы проверки наличия мультиколлиниарности. Показатель vif – «фактор инфляции вариации»
- •30)Методы устранения мультиколлинеарности.
- •31)Гетероскедастичность. Последствия гетероскедастичности.
- •32)Методы смягчения гетероскедастичности
- •33)Автокорреляция. Основные причины автокорреляции.
- •34)Последствия автокорреляции. Основные методы обнаружения автокорреляции.
- •35)Спецификация модели
- •36)Основные признаки качественной регрессионной модели.
- •37)Основные виды ошибок спецификации.
- •1. Отбрасывание значимой переменной
- •2. Добавление незначимой переменной
- •38)Обнаружение и корректировка ошибок спецификации
- •39)Проблемы спецификации
- •40)Необходимость использования фиктивных переменных в регрессионных уравнениях
- •41)Использование фиктивных переменных для сезонного анализа
1)Основные причины наличия в регрессионной модели случайного отклонения.
Невключение в модель всех объясняющих переменных.
Проблема в том, что никогда заранее не известно, какие факторы при создавшихся условиях действительно являются определяющими, а какими можно пренебречь. Здесь уместно отметить, что в ряде случаев учесть непосредственно какой-то фактор нельзя в силу невозможности получения по нему статистических данных.
Неправильный выбор функциональной формы модели.
Из-за слабой изученности исследуемого процесса либо из-за его переменчивости может быть неверно подобрана функция, его моделирующая. Это, безусловно, скажется на отклонении модели от реальности, что отразится на величине случайного члена.
Агрегирование переменных.
Во многих моделях рассматриваются зависимости между факторами, которые сами представляют сложную комбинацию других, более простых переменных.
Ошибки измерений.
Какой бы качественной ни была модель, ошибки измерений переменных отразятся на несоответствии модельных значений эмпирическим данным, что также отразится на величине случайного члена.
Ограниченность статистических данных.
Зачастую строятся модели, выражаемые непрерывными функциями. Но для этого используется набор данных, имеющих дискретную структуру. Это несоответствие находит свое выражение в случайном отклонении.
Непредсказуемость человеческого фактора.
Эта причина может «испортить» самую качественную модель. Действительно, при правильном выборе формы модели, скрупулезном подборе объясняющих переменных все равно невозможно спрогнозировать поведение каждого индивидуума.
2)Основные этапы регрессионного анализа.
выбор формулы уравнения регрессии;
определение параметров выбранного уравнения;
анализ качества уравнения и проверка адекватности уравнения эмпирическим данным, совершенствование уравнения.
3)Спецификация модели, каким образом она осуществляется?
Выбор формулы связи переменных называется спецификацией уравнения регрессии. В случае парной регрессии выбор формулы обычно осуществляется по графическому изображению реальных статистических данных в виде точек в декартовой системе координат, которое называется корреляционным полем (диаграммой рассеивания) (рис. 4.1).
На рис. 4.1 представлены три ситуации.
На графике 4.1,
взаимосвязь между X
и Y
близка к
линейной,
и прямая 1
достаточно
хорошо соответствует эмпирическим
точкам. Поэтому в данном случае в качестве
зависимости между X
и Y
целесообразно
выбрать линейную
функцию
.
На графике 4.1,б
реальная
взаимосвязь
между X
и У, скорее
всего, описывается
квадратичной функцией
(линия 2). И
какую бы мы ни провели прямую (например,
линия 1), отклонения точек наблюдений
от нее будут существенными и
неслучайными.
На графике 4.1,в явная взаимосвязь между X и У отсутствует. Какую бы мы ни выбрали форму связи, результаты ее спецификации и параметризации (определение коэффициентов уравнения) будут неудачными. В частности, прямые 1 и 2, проведенные
через центр «облака» наблюдений и имеющие противоположный наклон, одинаково плохи для того, чтобы делать выводы об ожидаемых значениях переменной У по значениям переменной X.