- •1Информация. Сообщение. Сигнал. Линия связи
- •1.1Первичные параметры линии
- •1.2Волновые (вторичные) параметры линии.
- •Комплексный коэффициент распространения волны –
- •Километрический коэффициент фазы позволяет оценить запаздывание сигналов в канале и судить о фазочастотных искажениях.
- •Общие формулы основных уравнений линий.
- •2Общие формулы основных уравнений линии.
- •3Параметры реальной линии связи
- •3.1Километрическое сопротивление реальной линии
- •3.2Поверхностный эффект
- •3.3Эффект близости
- •3.4Сопротивление двухпроводных симметричных цепей
- •3.5Двухпроводная цепь с биметаллическими и многопроволочными проводами, ее километрическое сопротивление.
- •3.6Результирующее активное сопротивление линии
- •3.7Сопротивление коаксиального кабеля
- •3.8Километрическая индуктивность
- •3.9Километрическая емкость
- •3.10Километрическая проводимость
- •3.11Волновые параметры воздушных и кабельных цепей.
- •4Основы расчета индуцированных токов и напряжений
- •4.1Магнитные влияния
- •4.2Электрическая и магнитная связь
- •Магнитное влияние
- •4.3Основное значение взаимного влияния между симметричными цепями
- •4.4Коэффициенты электромагнитной связи в двухпроводных цепях при взаимном влиянии.
- •4.5Особенности расчета влияний на кабельных линиях.
- •5Уменьшение влияния между цепями
- •5.1Переходное затухание между воздушными цепями
- •5.2Скрещивание цепей
- •5.3Симметрирование кабельных линий
- •6Волоконнно-оптические линии связи
- •6.1Конструктивные параметры волс
- •6.2Оптические параметры волс
- •6.3Апертурный угол. Числовая апертура.
- •6.4Потери и затухание в ов.
- •6.5Дисперсия
1.1Первичные параметры линии
В электросвязи общепринято использовать понятия первичных параметров однородной цепи, значения которых определяются распределением полей и не меняются вдоль цепи.
Первичными параметрами называются индуктивность и активное сопротивление проводов, а также емкость и проводимость изоляции между проводами, отнесенные к единице длины линии – километру и равномерно распределенные по всей длине линии.
Индуктивность проводов L (Гн/км) характеризует способность цепи накапливать энергию в магнитном поле, а также определяет соотношение между током в проводах цепи и сцепленным с ним магнитным потоком.
L=
, (1.4)
где k2 – коэффициент, учитывающий влияние эффекта, определяется материалами, из которых изготовлена линия, а также учитывает ее конструкцию;
d – расстояние между проводами;
r – радиус проводника (см. рисунок 1).
Индуктивность проводника в этом случае разделяется соответственно на внешнюю и внутреннюю:
L = Lвн+Lвнеш. (1.5)
С ростом частоты f индуктивность L уменьшается. Это объясняется тем, что индуктивность, определяемая полем внутри проводника (Lвнутр.) стремится к нулю из-за поверхностного эффекта, а также тем, что часть внешнего потока рассеивается в пространстве (чем больше Lрасс., тем меньше Lвнеш.):
f Iвнут Lвнут ;
f Lрассеян Lвнеш ;
f L .
Емкость C (Ф/км) оценивает способность цепи накапливать энергию электрического поля и связывает заряды на проводах с напряжением между ними.
С=
, (1.6)
где k3 – коэффициент, учитывающий влияние эффекта, определяется материалами, из которых изготовлена линия, а также учитывает ее конструкцию;
d – расстояние между проводами;
r – радиус проводника.
Ввиду того что электрическое поле уединенного провода круглого сечения не зависит от глубины расположения зарядов в нём, поверхностный эффект не оказывает влияния на емкость, значение которой, следовательно не зависит от частоты.
Сопротивление проводов R (Ом/км) характеризует потерю энергии на тепло в проводах и активное падение напряжения на них.
R=
, (1.7)
где R0 – сопротивление на постоянном токе, определяется металлом и сечением проводника;
k1 – коэффициент, учитывающий влияние эффекта и определяемый металлом;
f – частота протекания тока по проводнику;
r – радиус проводника.
Сопротивление проводов R с увеличением частоты тока растёт. Это происходит из-за поверхностного эффекта и диэлектрических потерь в изоляции. Поверхностный эффект заключается в том, что с ростом частоты ток вытесняется на поверхность проводника, таким образом уменьшается эффективное сечение проводника, а чем меньше площадь протекания тока, тем больше сопротивление R.
Проводимость изоляции G(См/км) между проводами цепи – величина, обратная сопротивлению изоляции, определяет потерю энергии в диэлектрике, окружающем провода, и ток утечки линии.
R=
, (1.8)
где G0 – проводимость при постоянном токе;
tg – характеризует диэлектрические потери, используемого диэлектрика.
Необходимо помнить, что проводимость изоляции не является величиной обратной сопротивлению проводов:
G
. (1.9)
Для идеальной линии первичные параметры R и G равны 0.
Проводимость изоляции G с увеличением частоты тока возрастает. При увеличении частоты за отметку fкр диэлектрик теряет способность изолировать (его сопротивление уменьшается).
Рисунок 1.7 – график зависимости параметра диэлектрика от частоты
Параметры воздушной линии G и C зависят от состояния погоды. Отложения гололёда и изморози на проводах приводят к увеличению ёмкости и проводимости изоляции цепи, так как вода имеет большую диэлектрическую постоянную и высокий коэффициент диэлектрических потерь.
