Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции для агро с роста.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
108.65 Кб
Скачать

2. Метаболические пути важнейших органических соединений

Обмен углеводов

Углеводы – важнейшие вещества, входящие в состав растения. Они составляют 75-80% сухого вещества и служат основными питательными и структурными материалами клеток растительных тканей.

Источником образования углеводов является процесс фотосинтеза, в результате чего образуются ассимиляционные сахароза или крахмал.

ц. Кальвина

фруктозо-1,6 дифосфат

ф руктозо-6 фосфат → сахарофосфат + УДФ → сахароза +Рн

глюкозо-6 фосфат + УТФ → УДФГ + РР(пирофосфат)

г люкозо-1 фосфат → амилаза

амилопектин → крахмал

Ферментом, участвующим в синтезе сахарозы, является сахарофосфатсинтетаза. При этом происходит перенос остатков глюкозы с УДФГ на фруктозу с образованием сахарофосфата, а затем сахараза образует сахарозу с высвобождением фосфора.

В синтезе амилозы участвует R-фермент или фосфорилаза, которая соединяет молекулы глюкозы 1,4 гликозидной связью. Амилопектин образуется с участием Q-фермента, соединяющий глюкозу 1,4 и 1,6 гликозидной связью. Образующиеся полисахариды соединяются ферментом амилаза в более сложный крахмал.

Далее сахароза может легко транспортироваться в потребляющие органы. Ассимиляционный крахмал подвергается распаду до глюкозы, которая используется на процессы новообразования, либо сама, либо преобразованная в сахарозу транспортируется в запасающие органы (клубни, корневище, семена и т.д.), где превращается в запасной крахмал по схеме реакций трансгликозидирования, где активными донорами гликозидных остатков являются нуклеозидсахара УДФГ и АДФГ.

Сахароза + УДФ ↔ УДФГ + фруктоза

УДФГ + «затравка» (Г)n ↔ УДФ + крахмал

или АДФГ + «затравка» (Г)n ↔ АДФ + крахмал

В качестве затравки выступает полисахарид, состоящий из 3-4 остатков глюкозы.

В прорастающих семенах или при отрастании многолетних растений активно происходит гидролиз крахмала под действием гидролитического фермента амилаза, либо под влиянием фосфорилаз глюкозо-1 фосфат, которая может включаться в синтетические процессы, либо окисляться до углекислого газа и воды в процессе дыхания.

К РАХМАЛ α-амилаза глюкоза

мальтоза

α-декстрины

β-амилаза β-декстрины

мальтоза

а милоза

г люкозо-1 фосфат

глюкозо-6 фосфат

фруктозо-6 фосфат

Обмен белков

Обмен белков входит в состав обмена пуринов и пиримидинов, где превращаются нуклеотиды, нуклеиновые кислоты, аминокислоты и белки.

В растительном организме сложные белки – протеиды являются основными компонентами цитоплазмы и играют важную роль в организации клеточных структур. Простые белки – протеины выполняют запасающую функцию и откладываются в семенах, клубнях, корневищах.

В созревающих семенах идет синтез белковых веществ из неорганических форм азота. Аммиак, поглощенный в виде аммония или образованный в результате восстановления нитратов, вступает в реакции аминирования с кетокислотами и образуются аминокислоты, использующиеся в биосинтезе белка.

ПВК

N H3 + ЩУК аминокислоты → полипептиды → белки

кетоглутаровая к-та

Непосредственно биосинтез белка смотри в разделе 1.

В прорастающих семенах реакции идет в обратном направлении, т.е. белки подвергаются гидролизу до аминокислот, которые включаются либо в синтез новых белков, либо дальше окисляются в дыхательных реакциях. При этом свободные аминокислоты подвергаются дезаминированию, которое может быть окислительным с участием оксидаз, гидролитическим с участием воды и амидаз либо восстановительным с участием гидрогеназ. При любом типе дезаминирования образуется кетокислота и аммиак.

протеиназа эндопептидаза дипептидаза

Белки → полипептиды → аминокислоты → кетокислота + NH3

Аммиак обезвреживается, включаясь в состав аспарагина, который служит донором аминогрупп при синтезе других аминокислот. Таким образом, количество азотистых соединений при прорастании практически не изменяется.

Обмен липидов

Обмен жиров складывается из их синтеза и распада. Жиры содержаться в любых растительных клетках. Они не растворяются в воде, не передвигаются по растению и их биосинтез идет во всех органах и тканях из растворимых сахаров, поступающих в эти органы.

Процессы превращения жиров изучены советским биохимиком С.Л. Ивановым. Жиры синтезируются из глицерина и жирных кислот, которые, в свою очередь, образуются из продуктов расщепления глюкозы: глицерин из 3-ФГА, а жирные кислоты из ацетил ~КоА. Главным ферментом, участвующим в синтезе триглицеридов (жиры), является ацилтрансфераза переносящая остатки жирных кислот на молекулу глицерина.

глюкоза

3-ФГА → глицерол-3фосфат → глицерин

ПВК ЖИРЫ

а цетил ~КоА жирные кислоты

Распад жиров идет при участии гидролитического фермента липаза, которая с присоединением воды расщепляет жир до глицерина и свободных жирных кислот. Липазы широко распространены в растениях. Каждому виду свойственна своя липаза. Однако, специфичность липаз очень низкая, любая липаза может расщеплять любой жир. Высокой специфичностью обладает липаза клещевины.

Глицерин 3-ФГА фруктоза-1,6 ди фосфат и др. углеводы

Ж ИР

ПВК

Жирные кислоты β-окисление ацетил ~КоА

янтарная кислота

ЩУК → ФЕП→ углеводы

обратный гликолиз (глюкониогенез)

Два первых этапа происходят глиоксисомах, цикл трикарбоновых кислот в митохондриях, а последние этапы – цитоплазме.

Образующиеся при распаде крахмала и жиров сахара, легко растворяются в воде, транспортируются к местам потребления и используются на рост и на дыхание. При этом их количество снижается.