- •Раздел 6. Рост и развитие растений
- •Тема 1. Общие закономерности роста
- •1. Общие представления о росте и развитии растений
- •Локализация роста
- •Клеточные основы роста
- •Ростовые явления
- •5. Необратимые нарушения роста
- •6. Методы учета скорости роста
- •Тема: Фитогормоны
- •1. Свойства фитогормонов
- •2. Фитогормоны активаторы
- •3. Фитогормоны ингибиторы
- •4. Фитогормоны и стресс
- •5. Взаимодействие фитогормонов
- •6. Механизм действия фитогормонов
- •Использование фитогормонов
- •Тема: Зависимость роста от внешних и внутренних факторов
- •1. Влияние условий внешней среды на рост растений
- •2. Зависимость роста от внутренних факторов
- •3. Движения растений
- •4. Ритмы физиологических процессов
- •Биотехнология
- •Тема: Закономерности развития растений
- •1. Особенности развития растений
- •2. Фотопериодизм
- •3. Яровизация
- •4. Гормональная теория развития растений
- •5. Формирование мужских и женских цветков
- •6. Физиология покоя
- •7. Процессы, происходящие при прорастании семян
- •Раздел: Обмен и транспорт органических веществ в растениях
- •Специфика обмена веществ в растениях
- •2. Метаболические пути важнейших органических соединений
- •3. Взаимосвязь процессов обмена
- •Общие схемы превращения (синтеза и распада) сложных органических веществ смотри в учебнике Третьякова стр. 348-352
- •4. Основные транспортные формы органических веществ и состав флоэмного сока
- •5. Структура флоэмы
- •6. Механизмы транспорта органических веществ
- •7. Система регуляции и управления превращением органических веществ в растении
2. Метаболические пути важнейших органических соединений
Обмен углеводов
Углеводы – важнейшие вещества, входящие в состав растения. Они составляют 75-80% сухого вещества и служат основными питательными и структурными материалами клеток растительных тканей.
Источником образования углеводов является процесс фотосинтеза, в результате чего образуются ассимиляционные сахароза или крахмал.
ц. Кальвина
фруктозо-1,6 дифосфат
ф руктозо-6 фосфат → сахарофосфат + УДФ → сахароза +Рн
глюкозо-6 фосфат + УТФ → УДФГ + РР(пирофосфат)
г люкозо-1 фосфат → амилаза
амилопектин → крахмал
Ферментом, участвующим в синтезе сахарозы, является сахарофосфатсинтетаза. При этом происходит перенос остатков глюкозы с УДФГ на фруктозу с образованием сахарофосфата, а затем сахараза образует сахарозу с высвобождением фосфора.
В синтезе амилозы участвует R-фермент или фосфорилаза, которая соединяет молекулы глюкозы 1,4 гликозидной связью. Амилопектин образуется с участием Q-фермента, соединяющий глюкозу 1,4 и 1,6 гликозидной связью. Образующиеся полисахариды соединяются ферментом амилаза в более сложный крахмал.
Далее сахароза может легко транспортироваться в потребляющие органы. Ассимиляционный крахмал подвергается распаду до глюкозы, которая используется на процессы новообразования, либо сама, либо преобразованная в сахарозу транспортируется в запасающие органы (клубни, корневище, семена и т.д.), где превращается в запасной крахмал по схеме реакций трансгликозидирования, где активными донорами гликозидных остатков являются нуклеозидсахара УДФГ и АДФГ.
Сахароза + УДФ ↔ УДФГ + фруктоза
УДФГ + «затравка» (Г)n ↔ УДФ + крахмал
или АДФГ + «затравка» (Г)n ↔ АДФ + крахмал
В качестве затравки выступает полисахарид, состоящий из 3-4 остатков глюкозы.
В прорастающих семенах или при отрастании многолетних растений активно происходит гидролиз крахмала под действием гидролитического фермента амилаза, либо под влиянием фосфорилаз глюкозо-1 фосфат, которая может включаться в синтетические процессы, либо окисляться до углекислого газа и воды в процессе дыхания.
К РАХМАЛ α-амилаза глюкоза
мальтоза
α-декстрины
β-амилаза β-декстрины
мальтоза
а милоза
г люкозо-1 фосфат
глюкозо-6 фосфат
фруктозо-6 фосфат
Обмен белков
Обмен белков входит в состав обмена пуринов и пиримидинов, где превращаются нуклеотиды, нуклеиновые кислоты, аминокислоты и белки.
В растительном организме сложные белки – протеиды являются основными компонентами цитоплазмы и играют важную роль в организации клеточных структур. Простые белки – протеины выполняют запасающую функцию и откладываются в семенах, клубнях, корневищах.
В созревающих семенах идет синтез белковых веществ из неорганических форм азота. Аммиак, поглощенный в виде аммония или образованный в результате восстановления нитратов, вступает в реакции аминирования с кетокислотами и образуются аминокислоты, использующиеся в биосинтезе белка.
ПВК
N H3 + ЩУК аминокислоты → полипептиды → белки
кетоглутаровая к-та
Непосредственно биосинтез белка смотри в разделе 1.
В прорастающих семенах реакции идет в обратном направлении, т.е. белки подвергаются гидролизу до аминокислот, которые включаются либо в синтез новых белков, либо дальше окисляются в дыхательных реакциях. При этом свободные аминокислоты подвергаются дезаминированию, которое может быть окислительным с участием оксидаз, гидролитическим с участием воды и амидаз либо восстановительным с участием гидрогеназ. При любом типе дезаминирования образуется кетокислота и аммиак.
протеиназа эндопептидаза дипептидаза
Белки → полипептиды → аминокислоты → кетокислота + NH3
Аммиак обезвреживается, включаясь в состав аспарагина, который служит донором аминогрупп при синтезе других аминокислот. Таким образом, количество азотистых соединений при прорастании практически не изменяется.
Обмен липидов
Обмен жиров складывается из их синтеза и распада. Жиры содержаться в любых растительных клетках. Они не растворяются в воде, не передвигаются по растению и их биосинтез идет во всех органах и тканях из растворимых сахаров, поступающих в эти органы.
Процессы превращения жиров изучены советским биохимиком С.Л. Ивановым. Жиры синтезируются из глицерина и жирных кислот, которые, в свою очередь, образуются из продуктов расщепления глюкозы: глицерин из 3-ФГА, а жирные кислоты из ацетил ~КоА. Главным ферментом, участвующим в синтезе триглицеридов (жиры), является ацилтрансфераза переносящая остатки жирных кислот на молекулу глицерина.
глюкоза
3-ФГА → глицерол-3фосфат → глицерин
ПВК ЖИРЫ
а цетил ~КоА жирные кислоты
Распад жиров идет при участии гидролитического фермента липаза, которая с присоединением воды расщепляет жир до глицерина и свободных жирных кислот. Липазы широко распространены в растениях. Каждому виду свойственна своя липаза. Однако, специфичность липаз очень низкая, любая липаза может расщеплять любой жир. Высокой специфичностью обладает липаза клещевины.
Глицерин 3-ФГА фруктоза-1,6 ди фосфат и др. углеводы
Ж ИР
ПВК
Жирные кислоты β-окисление ацетил ~КоА
янтарная кислота
ЩУК → ФЕП→ углеводы
обратный гликолиз (глюкониогенез)
Два первых этапа происходят глиоксисомах, цикл трикарбоновых кислот в митохондриях, а последние этапы – цитоплазме.
Образующиеся при распаде крахмала и жиров сахара, легко растворяются в воде, транспортируются к местам потребления и используются на рост и на дыхание. При этом их количество снижается.
