
- •С. В. Сапунов материаловедение и технология конструкционных материалов
- •080200 – Менеджмент, профиль «Производственный менеджмент
- •Санкт-Петербург
- •Предисловие
- •Раздел 1 теоретические основы материаловедения
- •1.1. Предмет материаловедения
- •1.2. Мировое производство материалов
- •1.2.1. Черные и цветные металлы
- •1.2.2. Преимущества и недостатки стали
- •1.2.3. Принципы маркировки и сортамент материалов
- •Обозначения стали 45
- •1.3. Строение металлов
- •1.3.1. Основные типы кристаллических решеток
- •1.3.2. Дефекты в кристаллах
- •1.4. Строение металлического слитка
- •1.5. Деформация и разрушение металлов
- •1.6. Возврат и рекристаллизация
- •1.6.1. Структура и свойства сплавов после горячей обработки давлением
- •1.7. Механические свойства материалов
- •1.7.1. Испытание на растяжение
- •1. Характеристики прочности
- •2. Характеристики пластичности
- •1.7.2. Определение твердости
- •1. Определение твердости по Бринеллю
- •2. Определение твердости по Роквеллу
- •3 . Определение твердости по Виккерсу
- •1.7.3. Определение ударной вязкости при изгибе
- •1.8. Полиморфные превращения
- •1.9. Строение сплавов
- •1.10. Диаграмма состояния железо – цементит
- •Механические свойства основных структурных составляющих сталей и чугунов
- •1.11. Железо и сплавы на его основе
- •1.12. Легирующие элементы в стали
- •1.12.1. Структурные классы легированных сталей
- •1.12.2. Цели легирования
- •Раздел 2 управление свойствами металлов и сплавов
- •2.1. Термическая обработка
- •2.1.1. Отжиг
- •2.1.2. Закалка и отпуск
- •2.1.3. Старение сплавов
- •2.2. Термомеханическая обработка
- •Сравнительные данные по механическим свойствам
- •2.3. Деформационное упрочнение
- •2.4. Химико-термическая обработка
- •Раздел 3 промышленные материалы
- •3.1. Классификация сталей
- •3.2. Конструкционные стали и сплавы
- •3.2.1. Углеродистые стали
- •3.2.2. Легированные стали
- •3.2.3. Стали и сплавы с особыми физическими свойствами
- •3.3. Инструментальные стали и сплавы
- •3.4. Чугуны
- •3.5. Магний и сплавы на его основе
- •3.6. Алюминий и сплавы на его основе
- •Классификация алюминиевых сплавов
- •3.7. Титан и сплавы на его основе
- •3.8. Медь и сплавы на ее основе
- •3.9. Тугоплавкие металлы и сплавы
- •3.10. Антифрикционные материалы
- •3.11. Полимеры и пластмассы
- •3.12. Композиционные материалы
- •Раздел 4 технология конструкционных материалов
- •4.1. Способы получения металлов и сплавов
- •4.2. Вторичная плавка металлов и сплавов
- •4.3. Технологии литейного производства
- •4.3.1. Литейные формы
- •4.3.2. Литье в объемные песчаные и оболочковые формы
- •4.3.3. Литье в кокиль, литье под давлением, литье вакуумным всасыванием и выжиманием
- •4.3.4. Литье по выплавляемым моделям
- •4.3.5. Центробежное, непрерывное и полунепрерывное литье
- •4.3.6. Электрошлаковое литье
- •4.4. Технологии обработки металлов давлением
- •4.4.1. Прокатка
- •4.4.2. Волочение и прессование
- •4.4.3. Ковка
- •4.4.4. Горячая штамповка
- •4.4.5. Холодная штамповка
- •4.5. Технологии сварки и пайки
- •4.5.1. Термические виды сварки
- •4.5.2. Механические виды сварки
- •4.5.3. Термомеханические виды сварки
- •4.5.4. Резка металлов
- •4.5.5. Пайка металлов
- •4.6. Технологии обработки резанием
- •4.6.1. Обработка на токарных станках
- •4.6.2. Обработка на сверлильных и расточных станках
- •4.6.3. Обработка на фрезерных станках
- •4.6.4. Обработка на строгальных, долбежных и протяжных станках
- •4.6.5. Обработка на шлифовальных, заточных и отделочных станках
- •4.6.6. Обработка на многооперационных станках
- •4.7. Физико-химические методы размерной обработки
- •4.7.1. Электрофизические методы
- •4.7.2. Электрохимические методы
- •4.8. Технологии обработки пластмасс
- •Заключение
- •Библиографический список
- •Приложение а
- •Приложение б Кратные и дольные приставки к физическим единицам
- •Содержание
- •Раздел 1 4
- •Раздел 2 27
- •Раздел 3 34
- •Раздел 4 50
4.5. Технологии сварки и пайки
Сварка – это процесс создания неразъемного соединения однородных или разнородных материалов за счет установления прочных связей между атомами соединяемых деталей при подводе внешней энергии путем нагревания и/или пластического деформирования. В зависимости от характера подводимой энергии все сварочные процессы (сварка, пайка, резка) можно отнести к термическим, механическим или термомеханическим. Процесс сварки включает стадии образования физического контакта между соединяемыми деталями, возникновения электронного взаимодействия между взаимодействующими атомами и развития диффузионных процессов. Получение надежного неразъемного соединения в реальных условиях осложнено наличием на поверхности свариваемых деталей микронеровностей, оксидных пленок, адсорбированных газов и различных загрязнений.
Сварке подвергаются практически любые металлы и неметаллы в любых условиях – на земле, в воде, в космосе. Толщина свариваемых деталей колеблется от микронов до метров, масса конструкций – от долей грамма до сотен тонн. Нередко сварка является единственно возможным способом создания неразъемных соединений материалов и получения заготовок, максимально приближенных к форме и размерам готовой детали или конструкции.
Соединения, получаемые сваркой, характеризуются высокими механическими свойствами, небольшим расходом металла, низкой трудоемкостью и себестоимостью. Надежность соединений, выполняемых сваркой, позволяет применять ее при сборке самых ответственных конструкций. Более половины валового внутреннего продукта промышленно развитых стран создается с применением сварки и родственных технологий. До 70% мирового потребления стального проката идет на производство сварных конструкций и сооружений.
4.5.1. Термические виды сварки
Наиболее широкое распространение получила сварка плавлением, которая состоит в том, что жидкий металл одной оплавленной кромки детали соединяется и перемешивается с жидким металлом второй оплавленной кромки, образуя общий объем жидкого металла, который называется сварочной ванной. В зависимости от вида используемой энергии различают электрическую и газовую сварку. В свою очередь, электрическая сварка плавлением подразделяется на дуговую, плазменно-дуговую, электрошлаковую, электроконтактную, электронно-лучевую и др. Ведущее место во всех отраслях промышленности и строительства занимает электродуговая сварка15.
Дуговая сварка. Сущность дуговой сварки состоит в том, что свариваемый металл плавится теплом электрической дуги. Для образования сварочной дуги используют электрическую цепь со специальным источником питания. Дуга горит между электродом и изделием. Для питания дуги используется переменный или постоянный ток от трансформаторов, выпрямителей, мотор-генераторов и т.п.
При дуговой сварке плавящимся электродом шов образуется за счет расплавления электрода и свариваемого металла. При сварке неплавящимся электродом шов заполняется металлом свариваемых частей, а иногда также присадочным металлом, подаваемым в зону дуги со стороны. В качестве плавящихся электродов используют стальные, медные, алюминиевые, неплавящихся – угольные, графитовые, вольфрамовые.
Для выполнения качественной сварки требуется защищать сварочный электрод, зону дуги и сварочную ванну от взаимодействия с кислородом и азотом воздуха. Для этого выполняют сварку покрытыми электродами, в защитной атмосфере (защитных газах), под флюсом, порошковой самозащитной проволокой.
По степени механизации сварочного процесса дуговая сварка подразделяется на ручную, полуавтоматическую (механизированную) и автоматическую.
Газовая сварка. Технологические процессы, выполняемые с применением газового пламени, называются газопламенной обработкой металлов (ГОМ). В настоящее время в качестве горючих газов для ГОМ используют ацетилен (С2Н2), сжиженные газы на основе пропан-бутановых смесей, природный газ; при этом окислителем служит кислород или воздух.
Газовая сварка отличается низкой производительностью, сопровождается нагревом широкой зоны, большими деформациями металла и существенными изменениями его структуры. В последнее время газовую сварку применяют преимущественно при ремонте, а также на тех работах, где ее использование незаменимо или более рационально.
Плазменная сварка. Плазменной называют сварку сжатой в узкий канал электрической дугой. Устройства для получения сжатой дуги называют плазматронами. Простейший плазматрон состоит из изолятора, неплавящегося электрода и медного, охлаждаемого водой сопла. В сопло подают плазмообразующий инертный, нейтральный или содержащий кислород газ, который в столбе дуги нагревается до высокой температуры и плавит металл. Плазматроны могут работать на постоянном и переменном токе.
Различают
плазматроны прямого
и косвенного действия.
Для
сварки и резки чаще применяют
плазматроны прямого действия – рис.
4.12. В них дуга
горит между электродом и обрабатываемым
изделием.
В
плазматронах косвенного действия дуга
горит
между электродом и соплом. Их применяют
при обработке
неэлектропроводных
материалов и в качестве
нагревателей газов.
Рис. 4.12. Схема плазматрона прямого действия: 1 – сварочный источник питания; 2 – высокочастотный генератор; 3 – вольфрамовый электрод; 4 – плазмообразующий газ; 5 – охлаждающая вода; 6 – защитный газ; 7 – сопло защитного газа; 8 – сопло, формирующее дугу; 9 – дуга; 10 – изделие
Электронно-лучевая сварка. Для расплавления стыка примыкающих друг к другу кромок деталей и образования качественного сварного шва в этом методе используется кинетическая энергия пучка разогнанных в сильном электрическом поле электронов. Электронный луч обеспечивает высокую удельную мощность на поверхности пятна нагрева. Сварка производится в вакууме.
Лазерная сварка. При облучении поверхности тела энергия квантов света поглощается этой поверхностью. Если световую энергию сконцентрировать на малом участке поверхности, то можно получить высококонцентрированный нагрев с интенсивностью до 1011 Вт/м2. На этом принципе основана сварка лучом оптического квантового генератора – лазера. Лазерную сварку производят на воздухе или в среде защитных газов (Ar, СО2). Полученные таким образом соединения отличаются высокой прочностью и благодаря высокой локализации нагрева минимальной деформацией сварных конструкций.
Широкое применение новых конструкционных материалов на основе тугоплавких и высокоактивных материалов (титана, циркония, молибдена, вольфрама и др.) потребовало создание способов их обработки источниками тепла с высочайшей плотностью энергии. Наиболее полно этим условиям отвечают рассмотренные электронно-лучевая и лазерная технологии.