
- •Билет 1.
- •Билет 2.
- •Билет 3.
- •Билет 4.
- •Билет 5.
- •Билет 6.
- •Билет 7.
- •Билет 8.
- •Билет 9.
- •Билет 10.
- •Билет 11.
- •Билет 12.
- •Билет 13.
- •Билет 14.
- •Билет 15.
- •Билет 16.
- •Билет 17.
- •Билет 18.
- •Билет 19.
- •1. Введем вектор - приращение плотности электромагнитной энергии, где сама величина w определяется интегралом:
- •Билет 20.
- •Билет 21.
- •Билет 22.
- •Билет 23.
- •Билет 24.
- •Билет 25.
- •Билет26.
- •Билет 27.
- •Билет 28.
- •Билет 29.
- •Билет 30.
Билет 8.
1. длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами. 2. Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g-излучения, вы уже знакомы. Самое коротковолновое g-излучение испускают атомные ядра. 3. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны. 4. Излучения различной длины волны отличаются друг от друга по способу их получения(излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации. 5. Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g-излучениям, сильно поглощаемом атмосферой. 6. По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям. 7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.
ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ - электромагнитные волны ,длины к-рых заключены в диапазоне с условными границами от единиц нм до десятых долей мм (диапазон частот ~3 х 1017 - 3 х 1011 Гц). К О. и. помимо воспринимаемого человеческим глазом видимого излучения(обычно называемого светом) относятся инфракрасное излучение и ультрафиолетовое излучение . ИНТЕНСИВНОСТЬ ИЗЛУЧЕНИЯ - энергетич. характеристика эл.-магн. излучения, распространяющегося в заданном направлении, пропорциональная квадрату амплитуды колебаний. Мерой интенсивности служит Пойнтинга вектор, определённый для средних значений по небольшим, но конечным интервалам пространства и времени и характеризующий поверхностную плотность потока энергии, проходящего в единицу времени через единичную площадку, перпендикулярную к направлениям электрич. и магн. векторов.
2. . Плотность заряда σ связана с напряженностью поля в конденсаторе формулой (1.22)
σ = Е/ε0
В данном рассмотрении удобнее характеризовать электрическое поле не вектором напряженности Е, а вектором электрической индукции D. Согласно (1.64) для вакуума D = ε0Е, поэтому σ = D. Тогда из (4.6) получаем
jсм =
В общем случае электрическое поле является функцией координат и времени, поэтому в последнем выражении следует использовать символ частной производной по времени:
jсм = (4.7)
Таким образом, плотность тока смещения равна скорости изменения электрической индукции. Ток смещения, естественно, не переносит зарядов. Из всех физических свойств электрического тока Максвелл приписал току смещения лишь одно свойство – способность создавать в окружающем пространстве магнитное поле.
При анализе магнитных полей важное значение имеет закон полного тока, который в интегральной форме имеет вид:
(3.3)и гласит о том, что линейный интеграл по замкнутому контуру l от напряженности магнитного поля равен полному току, протекающему сквозь сечение, ограниченное этим контуром. Под полным током понимают алгебраическую сумму токов проводимости, переноса и смещения. В дифференциальной форме закон полного тока можно записать следующим образом: