
- •Билет 1.
- •Билет 2.
- •Билет 3.
- •Билет 4.
- •Билет 5.
- •Билет 6.
- •Билет 7.
- •Билет 8.
- •Билет 9.
- •Билет 10.
- •Билет 11.
- •Билет 12.
- •Билет 13.
- •Билет 14.
- •Билет 15.
- •Билет 16.
- •Билет 17.
- •Билет 18.
- •Билет 19.
- •1. Введем вектор - приращение плотности электромагнитной энергии, где сама величина w определяется интегралом:
- •Билет 20.
- •Билет 21.
- •Билет 22.
- •Билет 23.
- •Билет 24.
- •Билет 25.
- •Билет26.
- •Билет 27.
- •Билет 28.
- •Билет 29.
- •Билет 30.
Билет 6.
Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Явление дифракции объясняется с помощью принципа Гюйгенса ,согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Согласно принципу Гюйгенса - Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн.
|
(5.1) |
где
1)
-
распределение комплексных амплитуд
вектора напряжённости электрического
поля источника
на
произвольной замкнутой поверхности
,
охватывающей источник
;
2)
-
комплексная амплитуда вторичных
источников сферических волн на
поверхности
;
3)
-
расстояние от точки расположения
вторичного источника с координатами
(
),
расположенного на поверхности
,
до точки наблюдения с координатами
(
);
4)
-
медленно меняющаяся функция в зависимости
от положения точек
и
,
учитывающая направленность вторичных
излучателей, которую приближённо можно
считать равной единице за исключением
случая расположения точки
наблюдения
внутри
,
когда она полагается равной нулю.
2. Поглощение света в веществе связано с преобразованием энергии электромагнитного поля волны в тепловую энергию вещества (или в энергию вторичного фотолюминесцентного излучения). Закон поглощения света (закон Бугера) имеет вид:
I=I0 exp(-ax), (1)
где I0, I -интенсивности света на входе (х=0) и выходе из слоя среды толщины х, a-коэффициент поглощения, он зависит от l.
Для диэлектриков a=10-1¸ 10-5 м-1 , для металлов a=105¸ 107 м-1, поэтому металлы непрозрачны для света.
Зависимостью a (l ) объясняется окрашенность поглощающих тел.
Дифракция света может происходить в оптически неоднородной среде, например в мутной среде(дым, туман, запыленный воздух и т.п.). Дифрагируя на неоднородностях среды, световые волны создают дифракционную картину, характеризующуюся довольно равномерным распределением интенсивности по всем направлениям. Такую дифракцию на мелких неоднородностях называют рассеянием света.Это явление наблюдается, если узкий пучок солнечных лучей проходит через запыленный воздух, рассеивается на пылинках и становится видимым.Если размеры неоднородностей малы по сравнению с длиной волны (не более чем 0,1l ), то интенсивность рассеянного света оказывается обратно пропорциональна четвертой степени длины волны, т.е.
Iрасс ~ 1/l 4, (2)
эта зависимость носит название закона Релея.
Рассеяние света наблюдается также и в чистых средах, не содержащих посторонних частиц. Например, оно может происходить на флуктуациях (случайных отклонениях) плотности, анизотропии или концентрации. Такое рассеяние называют молекулярным.