Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по СТО 2012г..docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
265.6 Кб
Скачать

Анри Пуанкаре

Важную роль в развитии электронной теории Лоренца и в формулировке физических идей, которые легли в основу специальной теории относительности, сыграл Анри Пуанкаре. В частности, ему принадлежит ясная формулировка принципа относительности для электромагнитных явлений. В своей работе 1895 г. он писал:

Невозможно обнаружить абсолютное движение материи, или, точнее, относительное движение весомой материи и эфира.

В 1898 г. в статье «Измерение времени» Пуанкаре выдвинул гипотезу постоянства скорости света и обратил внимание на условный характер понятия одновременности двух событий. В книге «Наука и гипотеза» (1902 г) Пуанкаре пишет:

Не существует абсолютного времени. Утверждение, что два промежутка времени равны, само по себе не имеет смысла и можно применять его только условно.

Под влиянием работ Пуанкаре Лоренц в 1904 году предложил новый вариант своей теории. В ней он предположил, что при больших скоростях механика Ньютона нуждается в поправках. Анри Пуанкаре далеко развил эти идеи в статье «О динамике электрона», краткий анонс которой был опубликован в сообщениях французской академии в июне 1905 г. В этой статье был сформулирован всеобщий принцип относительности, совместный с преобразованиями Лоренца. Пуанкаре установил групповой характер преобразований Лоренца и нашёл выражение для четырёхмерного интервала как инварианта этих преобразований. В этой же работе он предложил релятивистское обобщения теории гравитации, в которой тяготение распространялось в эфире со скоростью света. Несмотря на то, что фактически Пуанкаре сформулировал основные постулаты СТО, его работы, были написаны в духе эфирной теории Лоренца:

Результаты, полученные мною, согласуются во всех наиболее важных пунктах с теми, которые получил Лоренц. Я стремился только дополнить и видоизменить их в некоторых деталях.

Альберт Эйнштейн

В сентябре 1905 г. Альберт Эйнштейн публикует свою знаменитую работу «К электродинамике движущихся сред». Несмотря на «электродинамическое» название, работа Эйнштейна существенно отличалась по своему характеру от работ Пуанкаре и Лоренца. Она была проста в математическом плане и содержала пересмотр физических представлений о пространстве и времени. В её первом разделе Эйнштейн рассматривает процедуру синхронизации двух часов и пишет:

Дальнейшие соображения опираются на принцип относительности и на принцип постоянства скорости света. Мы определяем оба принципа следующим образом:

1. Законы, по которым изменяются состояния физических систем, не зависят от того, к какой из двух координатных систем, находящихся относительно друг друга в равномерном поступательном движении, эти изменения состояния относятся.

2. Каждый луч света движется в покоящейся системе координат с определенной скоростью V независимо от того, испускается ли этот луч света покоящимся или движущимся телом.

На основе этих постулатов Эйнштейн достаточно просто получил преобразования Лоренца. Подобный аксиоматический подход, общность и наглядный физический анализ измерительных процедур сразу привлёк широкое внимание. Именно эта работа фактически знаменовала собой создание специальной теории относительности.

Дальнейшее развитие

Часть учёных сразу приняли СТО: Макс Планк (1906) и сам Эйнштейн (1907) построили релятивистскую динамику и термодинамику. Герман Минковский в 1907 году представил математическую модель кинематики СТО, в которой преобразования Лоренца вытекают из геометрии четырёхмерного псевдоевклидова пространства. В пространстве Минковского лоренцевы преобразования являются преобразованиями поворотов координатных осей.

Были, однако, и критики новых концепций. Они указывали на то, что теория относительности не предсказывает новых фактов, которые можно проверить экспериментально, и ничем не лучше теории Лоренца. Появились попытки найти в СТО внутренние противоречия. Концепцию эфира продолжали поддерживать Дж. Дж. Томсон, Ленард, Лодж и другие известные физики. Сам Лоренц прекратил критику СТО только к концу жизни.

Работы по аксиоматике СТО

В 1910 году на собрании немецких натуралистов и врачей русский учёный Владимир Игнатовский сделал доклад «Некоторые общие замечания к принципу относительности» [29]:

Сейчас я ставлю перед собой вопрос о том, к каким взаимосвязям или, точнее, уравнениям преобразования, можно прийти, если поставить во главу исследования только принцип относительности.

Игнатовский показывал, что исходя из линейности преобразований, принципа относительности и изотропности пространства, можно вывести преобразования Лоренца. В этом выводе второй постулат Эйнштейна об инвариантности скорости света не использовался.

В следующем 1911 году в Annalen der Physik выходит работа Филиппа Франка и Германа Роте: «О преобразовании пространственно-временных координат из неподвижных систем в движущиеся» [30], в которой подход Игнатовского получил существенное развитие. Основываясь на групповом анализе, Франк и Роте в классе линейных функций нашли наиболее общие преобразования между инерциальными системами отсчёта. Они оказались зависящими от двух фундаментальных констант, имеющих размерность скорости. Добавление аксиомы изотропности пространства переводит эти преобразования в преобразования Лоренца, а аксиома абсолютности времени — в преобразования Галилея. Франк и Роте также, по-видимому, первыми, отметили, что наиболее общими преобразованиями между двумя инерциальными системами отсчёта являются дробно-линейные функции.

Несмотря на фундаментальную важность этих работ для вопросов основания физики, они остались практически незамеченными. Большинство учебной литературы вплоть до настоящего времени основывается на аксиоматическом подходе Эйнштейна. Среди немногочисленных упоминаний работ Игнатовского, Франка и Роте можно отметить учебник Вольфганга Паули «Теории относительности». Однако, в связи с этими работами он пишет [31]:

Из теоретико-групповых соображений можно получить лишь внешний вид формул преобразования, но не их физическое содержание.

При этом подразумевается, что возникающая в преобразованиях Лоренца фундаментальная константа скорости, не может быть, без привлечения дополнительных гипотез, интерпретирована как скорость света.

Заметим, что идея о том, что для обоснования СТО не требуется второго постулата Эйнштейна, неоднократно переоткрывалась [32] [33] [34] [35] [36], однако, обычно без упоминания основополагающих работ 1910—1911 года.

Связь с другими теориями

Гравитация

Основная статья: Общая теория относительности

Для описания гравитации разработано особое расширение теории относительности, в котором допускается кривизна пространства-времени. Тем не менее, динамика даже в рамках СТО может включать гравитационное взаимодействие, пока потенциал гравитационного поля много меньше c2.

Следует также заметить, что специальная теория относительности перестает работать в масштабах всей Вселенной, требуя замены на ОТО.

Классическая механика

Теория относительности входит в существенное противоречие с некоторыми аспектами классической механики. Например, парадокс Эренфеста показывает несовместимость СТО с понятием абсолютно твёрдого тела. Надо отметить, что даже в классической физике предполагается, что механическое воздействие на твёрдое тело распространяется со скоростью звука, а отнюдь не с бесконечной (как должно быть в воображаемой абсолютно твёрдой среде).

Квантовая механика

Специальная теория относительности (в отличие от общей) полностью совместима с квантовой механикой. Их синтезом является релятивистская квантовая теория поля. Отметим, что квантовая теория поля может быть сформулирована как нерелятивистская теория [37]. Более того, такое квантовомеханическое явление как спин без привлечения теории относительности не имеет разумного объяснения. Однако, обе теории вполне независимы друг от друга. Возможно построение как квантовой механики, основанной на нерелятивистском принципе относительности Галилея (см. уравнение Шрёдингера), так и теорий на основе СТО, полностью игнорирующих квантовые эффекты.

Развитие квантовой теории всё ещё продолжается, и многие физики считают, что будущая полная теория ответит на все вопросы, имеющие физический смысл, и даст в пределах как СТО в сочетании с квантовой теорией поля, так и ОТО. Скорее всего СТО ожидает такая же судьба, как и механику Ньютона — будут точно очерчены пределы её применимости. В то же время такая максимально общая теория пока является отдалённой перспективой.

Комментарии

Так же, как и в случае квантовой механики, многие предсказания теории относительности противоречат интуиции, кажутся невероятными и невозможными. Это, однако, не означает, что теория относительности неверна. В действительности, то, как мы видим (либо хотим видеть) окружающий нас мир и то, каким он является на самом деле, может сильно различаться.

О том, что СТО действительно описывает наш мир, свидетельствует огромный экспериментальный опыт. Многие следствия этой теории используются на практике. Очевидно, что все попытки «опровергнуть СТО» обречены на провал потому, что сама теория опирается на три постулата Галилея (которые несколько расширены), на основе которых построена ньютонова механика, а также на дополнительный постулат о постоянстве скорости света во всех системах отсчета. Все четыре не вызывают какого-либо сомнения в пределах максимальной точности современных измерений: лучше 10 − 12, а в некоторых аспектах — до 10 − 15. Более того, точность их проверки является настолько высокой, что постоянство скорости света положено в основание определения метра — единицы длины, в результате чего скорость света становится константой автоматически, если измерения вести в соответствии с метрологическими требованиями.

Источники

  1. Гинзбург В. Л. Как и кто создал теорию относительности? в Эйнштейновский сборник, 1966. — М.: Наука, 1966. — С. 363. — 375 с. — 16000 экз.

  2. Гинзбург В. Л. Как и кто создал теорию относительности? в Эйнштейновский сборник, 1966. — М.: Наука, 1966. — С. 366-378. — 375 с. — 16000 экз.

  3. Сацункевич И. С. Экспериментальные корни специальной теории относительности. — 2-е изд. — М.: УРСС, 2003. — 176 с. — ISBN 5-354-00497-7

  4. Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М.: Мир, 1977. — Т. 1. — С. 109. — 474 с.

  5. ↑ Einstein A. «Zur Elektrodynamik bewegter Korper» Ann Phys.- 1905.- Bd 17.- S. 891. Перевод:Эйнштейн А. «К электродинамике движущегося тела» Эйнштейн А. Собрание научных трудов. — М.: Наука, 1965. — Т. 1. — С. 7-35. — 700 с. — 32000 экз.

  6. 1 2 Матвеев А. Н. Механика и теория относительности. — Издание 2-е, переработанное. — М.: Высш. шк., 1986. — С. 78-80. — 320 с. — 28000 экз.

  7. 1 2 Паули В. Теория Относительности. — М.: Наука, Издание 3-е, исправленное. — 328 с. — 17700 экз. — ISBN 5-02-014346-4

  8. von Philipp Frank und Hermann Rothe «Über die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme» Ann. der Physik, Ser. 4, Vol. 34, No. 5, 1911, pp. 825—855 (русский перевод)

  9. Фок В. А. Теория пространства времени и тяготения. — Издание 2-е, дополненное. — М.: Гос.изд. физ.-мат. лит., 1961. — С. 510-518. — 568 с. — 10000 экз.

  10. 1 2 3 4 Преобразования Лоренца в книге Релятивистский мир

  11. 1 2 von W. v. Ignatowsky «Einige allgemeine Bemerkungen zum Relativitätsprinzip» Verh. d. Deutsch. Phys. Ges. 12, 788-96, 1910 (русский перевод)

  12. Терлецкий Я. П. Парадоксы теории относительности. — М.: Наука, 1966. — С. 23-31. — 120 с. — 16500 экз.

  13. Паули В. Теория Относительности. — М.: Наука, Издание 3-е, исправленное. — С. 27. — 328 с. — 17700 экз. — ISBN 5-02-014346-4

  14. von Philipp Frank und Hermann Rothe «Über die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme» Ann. der Physik, Ser. 4, Vol. 34, No. 5, 1911, pp. 825—855 (русский перевод)

  15. Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7

  16. 1 2 3 Принцип параметрической неполноты в книге Релятивистский мир

  17. ↑ Мермин Н.Д. -- "Теория относительности без постулата о постоянстве скорости света" Физика за рубежем. Серия Б. (1986) Mermin N.D. - "Relativity without light" Am.J.Phys., Vol. 52, No. 2 (1984) p. 119-124.

  18. 1 2 Stepanov S.S. «Time-space varying speed of light and the Hubble law in a static universe» Physical Review D, (2000) V.62, P.2, p.023507 (pdf)

  19. ↑ Manida S.N. — «Fock-Lorentz transformation and time-varying speed of light.» arXiv: gr-qc/9905046 (1999) (pdf)

  20. ↑ Stepanov S.S. - «Fundamental physical constants and the principle of parametric incompleteness.» arXiv: physics/9909009 (1999) (pdf)

  21. Паули В. Теория Относительности. — М.: Наука, Издание 3-е, исправленное. — С. 26. — 328 с. — 17700 экз. — ISBN 5-02-014346-4

  22. Окунь Л. Б. «Понятие массы», УФН, 1989, Выпуск 7. стр. 511—530. (статья)

  23. ↑ См. Повторения опыта Майкельсона

  24. ↑ См., например, Эфир возвращается?

  25. Галилео Галилей Диалог о двух главнейших системах мира - птоломеевой и коперниковой. — М.: 1948.

  26. ↑ Заметим, что это название появилось уже в XX веке см. Паули В. Теория Относительности. — М.: Наука, Издание 3-е, исправленное. — С. 27. — 328 с. — 17700 экз. — ISBN 5-02-014346-4

  27. ↑ Единственным исключением явились эксперименты Миллера на горе Маунт Вильсон. Они свидетельствовали об эфирном ветре, имеющим скорость около 10 м/c перпендикулярно к плоскости орбиты Земли, и его отсутствии вдоль траектории движения Земли вокруг Солнца. В дальнейшем повторение этих экспериментов другими исследователями на более точной аппаратуре эффекта не выявили.

  28. Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, 1989, стр. 161.

  29. von W. v. Ignatowsky, «Einige allgemeine Bemerkungen zum Relativitätsprinzip», Verh. d. Deutsch. Phys. Ges. 12, 788-96, 1910 (русский первод)

  30. von Philipp Frank und Hermann Rothe «Über die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme», Ann. der Physik, Ser. 4, Vol. 34, No. 5, 1911, pp. 825—855 (русский первод)

  31. Паули В. Теория Относительности. — М.: Наука, Издание 3-е, исправленное. — С. 27. — 328 с. — 17700 экз. — ISBN 5-02-014346-4

  32. Терлецкий Я. П. — Парадоксы теории относительности, М.: Наука (1965)

  33. Mermin N.D. — «Relativity without light», Am.J.Phys., Vol. 52, No. 2 (1984) p. 119—124. Русский перевод: Мермин Н. Д. — «Теория относительности без постулата о постоянстве скорости света», Физика за рубежем. Серия Б. (1986)

  34. Lee A.R. Kalotas T.M. — «Lorentz transformations from the first postulate», Am.J.Phys., Vol. 43, No. 5, (1975) p. 434—437.

  35. Achin Sen «How Galileo could have derived the special theory of relativity» Am.J.Phys., Vol. 62, No. 2 (1994) p. 157—162.

  36. Nishikawa S. — «Lorentz transformation without the direct use of Einstein’s postulates» Nuovo Cimento, Vol. 112B, No. 8 (1997) p. 1175—1187.

  37. ↑ Шварц А. С. Математические основы квантовой теории поля. М.: Атомиздат, 1975.

Литература

  • Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7

  • Паули В. Теория относительности. Изд. 2-е, испр. и доп. Перев. с нем. — М.: Наука, 1983. — 336 с.

  • Спасский Б. И.. История физики. Том 2, часть 2-я. М.: Высшая школа, 1977.

  • Эйнштейн А. Сущность теории относительности. — М.: Изд. ин. лит., 1955. — 157 с.

  • Уиттекер Э. История теории эфира и электричества. Современные теории 1900—1926. Пер с англ. Москва, Ижевск: ИКИ, 2004. 464с. ISBN 5-93972-304-7 (Глава 2)

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900—1915). М.: Наука, 1981. — 352c.

Работы основоположников

  • Принцип относительности. Сб. работ по специальной теории относительности. М.: Атомиздат, 1973.

  • Г. А. Лоренц. Интерференционный опыт Майкельсона. Из книги "Versucheiner Theoriederelektrischenundoptischen Erscheinungeninbewegten Korpern. Leiden, 1895, параграфы 89…92.

  • А. Пуанкаре. Измерение времени. «Revuede Metaphysiqueetde Morale», 1898, t. 6, p. 1…13.

  • А. Пуанкаре. Оптические явления в движущихся телах. ElectriciteetOptique, G. CarreetC. Naud, Paris, 1901, p. 535…536.

  • А. Пуанкаре. О принципе относительности пространства и движения. Главы 5…7 из книги «Наука и гипотеза»(H. Poinrare. Scienceand Hypothesis. Paris, 1902.)

  • А. Пуанкаре. Настоящее и будущее математической физики. Доклад, напечатанный в журнале «Bulletindes Sciences Mathematiques», 1904, v. 28, ser. 2, p. 302.

  • Г. А. Лоренц.Электромагнитные явления в системе движущейся с любой скоростью, меньшей скорости света. Proc Acad., Amsterdam, 1904, v 6, p. 809.

  • А. Эйнштейн. К электродинамике движущихся тел. Ann. d. Phys.,1905 (рукопись поступила 30 июня 1905 г.), b. 17, s. 89.

  • Эйнштейн А. Собрание научных трудов в четырех томах. Том 1. Работы по теории относительности 1905—1920. М.: Наука, 1965.

  • А. Пуанкаре. О динамике электрона. Rendicontidel Circolo Matematicodi Palermo, 1906 (рукопись поступила 23 июля 1905 г.) v. XXI, p. 129 Однако, краткое сообщение о полученных результатах было сделано Пуанкаре 5 июня 1905 г. и под этой же датой напечатано в докладах Французской Академии наук (см. А. А. Тяпкин «Об истории возникновения теории относительности»)

Доп. литература

  • Угаров В. А. Специальная теория относительности. 2-е изд. М.: Наука, 1977.

  • Тоннела М. А. Основы электромагнетизма и теории относительности. М.: ИЛ, 1962.

  • Толмен Р. Относительность, термодинамика и космология. М.: Наука, 1974.

Разное

  • Кузьмичёв В. Е. Законы и формулы физики/ Отв. ред. В. К. Тартаковский. — Киев: Наук. думка, 1989. — С.84-88. — ISBN 5-12-000493-8. Кузьмичёв В. Е. Законы и Формулы физики.

  • Селезнев Ю. А. Основы элементарной физики. Учебное пособие. — М.: Наука, Главная редакция физико-математической литературы, 1974 г. — С.78 — 79.

  • Физическая энциклопедия, т.2 — М.: Большая Российская Энциклопедия. Физическая энциклопедия.

Ссылки

  • Релятивистский мир — лекции по теории относительности, гравитации и космологии

  • Общая и специальная теория относительности на сайте «Мир математических уравнений» EqWorld

  • www.relativity.ru — теория относительности на русском языке: грамотные статьи, вопросы-ответы, анимации.

  • Работы, описывающие структуру СТО и относительности синхронизации часов в ней: arxiv:gr-qc/0510024; arxiv:gr-qc/0510017; arxiv:gr-qc/0205039.

  • Статья о вкладе А. Пуанкаре в создание СТО: T. Damour: Poincare, Relativity, Billiards and Symmetry.

Примечания

Физика (экспериментальнаятеоретическая)

Основные разделы

Механика • Термодинамика • Статистическая физика • Электродинамика • Колебания и Волны • Квантовая физика • Атомная физика • Ядерная физика • Физика элементарных частиц • Теория поля

Механика

Классическая механика • Специальная теория относительности • Общая теория относительности • Релятивистская механика • Квантовая механика • Механика сплошных сред

Термодинамика и статистическая физика

Молекулярная физика • Физическая кинетика • Физика конденсированного состояния

Теория поля

Классическая теория поля • Квантовая теория поля

Электродинамика

Электростатика • Магнитостатика • Электродинамика сплошных сред • Оптика • Квантовая электродинамика

Колебания и волны

Оптика • Акустика • Радиофизика • Теория колебаний

Прикладная физика

Физика плазмы • Лазерная физика

Связанные науки

Химическая физика • Физическая химия • Математическая физика • Астрофизика • Геофизика • Биофизика • Физика атмосферы • Метрология • Материаловедение

См. также

Космология • Нелинейная динамика

15