
- •Контрольные вопросы для усвоения практических навыков
- •Задания для приобретения практических навыков
- •Теоретические основы метода Подтема 1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •Восстановительный потенциал
- •Окислительно-восстановительную пару / платиновый электрод:
- •Возможности и направления окислительно-восстановительных реакций
- •Стандартные электродные потенциалы окислительно-восстановительных систем
- •Подтема 2. Перманганатометрия
- •Рабочие растворы
- •Индикаторы
- •Правило выбора индикатора
- •Практическое применение
- •Подтема 3. Иодометрия
- •Рабочие растворы
- •Индикаторы
- •Основные условия проведения реакции иода с тиосульфатом
- •Практическое применение
- •Ответьте на вопросы и решите задачи
- •Лекция 5 физико-химические методы анализа. Электрохимические методы
- •Классификация физико-химических методов, достоинства и недостатки этих методов
- •Классификация электрохимических методов анализа
- •Сущность кондуктометрического метода
- •Сущность полярографического метода
- •Практическое занятие 10 расчет эдс для гальванической цепи
- •Контрольные вопросы для усвоения практических навыков
- •Задания для приобретения практических навыков
- •Гальваническая цепь
- •Стандартные электродные потенциалы металлов в водных растворах при 298 к (ряд напряжений металлов)
- •Потенциала цинкового электрода
- •Хлорсеребряный электрод сравнения
- •Ионо- и молекулярноселективные электроды определения
- •Лекция 6 фотометрический метод анализа
- •Теоретические основы фотометрии Фотометрический анализ
- •Область оптических спектров
- •Методы фотометрического анализа
- •Теоретические основы фотометрического анализа
- •Закон аддитивности светопоглощения.
- •Выбор условий для фотометрического определения
- •Определение концентрации вещества в растворе с помощью градуировочного графика
- •Приборы для измерения поглощения раствора
Гальваническая цепь
Гальваническая цепь представляет собой замкнутую систему, состоящую из двух электродов, соединенных между собой внешней цепью – электронный проводник (металл) и внутренней цепью – ионный проводник (растворы электролита, соединенные солевым мостиком). В гальванической цепи происходит превращение химической энергии процессов окисления и восстановления в электрическую энергию. В гальванической цепи различают электроды: анод и катод.
А нодом в электрохимии называется электрод, на котором протекает реакция окисления, т.е. отдача электронов.
В гальванической цепи анод заряжен отрицательно, и он посылает электроны во внешнюю цепь. Анодом всегда является электрод, материал которого легче окисляется, например, более активный металл. В отличие от анода, анодный раствор из-за накопления в нем избытка катионов заряжается положительно.
К атодом в электрохимии называется электрод, на котором протекает реакция восстановления, т.е. присоединение электронов.
В гальванической цепи катод заряжен положительно, и он получает электроны из внешней цепи. Катодом является электрод из менее активного металла, катионы которого легче восстанавливаются. В отличие от катода, катодный раствор в гальванической цепи заряжается отрицательно из-за накопления в нем анионов.
Необходимо всегда помнить, что при рассмотрении электролиза (когда электрическая энергия превращается в химическую) характер процессов, протекающих на электродах, сохраняется, а знаки анода и катода изменяются на противоположные.
При условном обозначении гальванической цепи анод записывается слева, катод справа. Граница раздела между электродом и раствором, в который он опущен, обозначается одной чертой, а электролитический мостик, соединяющий анодный и катодный растворы, обозначается двумя чертами:
– Анод Анодный Катодный Катод +
раствор раствор
анионы
катионы
При замыкании гальванической цепи в ней из-за пространственного разделения реакций окисления (анод) и восстановления (катод) происходит направленное движение электронов от анода к катоду по внешней цепи, а ионов – по внутренней цепи (электролитическому мостику). Вследствие возникновения направленного движения заряженных частиц в гальванической цепи имеет место превращение химической энергии окислительно-восстановительных реакций в электрическую. Таким образом, гальванические цепи могут быть химическими источниками тока.
Способность гальванической цепи к переносу электрических зарядов характеризуется электродвижущей силой (ЭДС).
Э
ДС
гальванической цепи определяется как
разность потенциалов катода и анода:
.
В гальванической цепи, работающей самопроизвольно, потенциал анода всегда меньше потенциала катода, и ее ЭДС – величина положительная (Е > 0).
Величина стандартного электродного потенциала металла характеризует его способность отдавать электроны и имеет постоянное для каждого металла значение. Стандартные электродные потенциалы металлов приведены в таблице 25.
Таблица 25