- •Введение
- •1. Основные понятия и определения
- •Факторы
- •Определение фактора
- •Требования, предъявляемые к факторам при планировании эксперимента
- •Требования к совокупности факторов
- •2. Представление результатов экспериментов
- •3. Разложение функции отклика в степенной ряд, кодирование факторов
- •4. Однофакторный факторный эксперимент
- •4.1. Регрессионный анализ
- •Последовательность проведения регрессионного анализа
- •4.2. Метод наименьших квадратов
- •4.3. Регрессионные модели первого и второго порядка
- •4.4. Построение графиков
- •Построение линий тренда
- •4.5. Линейная функция
- •4.6. Логарифмическая, степенная и экспоненциальная функции
- •4.7. Полиномиальная функция
- •4.8. Проверка адекватности модели
- •4.9. Проверка значимости параметров модели и ее адекватности
- •4.10. Некоторые нелинейные модели, сводящиеся к линейным
- •Полиномиальная модель
- •4.11. Множественная линейная регрессия
- •4.12. Регрессия в программе Excel
- •4.13. Корреляционный анализ
- •5. Полный факторный эксперимент
- •5.1. Выбор факторов
- •5.2. Матричные преобразования при обработке результатов эксперимента
- •5.3. Ортогональное планирование эксперимента
- •4. Планы полного факторного эксперимента 2n (планы пфэ 2n)
- •1.5.3. Алгоритм пфэ при неравном числе параллельных опытов.
- •5.5. Планы дробного факторного эксперимента (планы дфэ)
- •1.6. Факторный эксперимент второго порядка
- •5.6. Насыщенные планы первого порядка
- •5.7. Планы второго порядка
- •5.7.1. Ортогональный центрально-композиционный план второго порядка
- •5.7.2. Планы второго порядка с единичной областью планирования
- •5.8. Рототабельные планы
- •5.8.1. Рототабельный ортогональный центрально-композиционный план
- •5.9. Планы для описания поверхности отклика
- •5.9.1. Композиционные планы
- •5.9.2. Композиционные планы типа Вn
- •5.10. Планы для оценки влияния факторов. Планы на латинских квадратах
- •5.11. Планы для экспериментирования в условиях дрейфа
- •Факторный эксперимент при изучении смесевых систем
- •2.1.2. Алгоритм симплекс-решетчатых планов неполного третьего порядка для трехкомпонентной смеси.
- •. Насыщенный и сверхнасыщенный планы факторного эксперимента
- •6. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта.
- •7. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена.
- •8. Дисперсионный анализ
- •8. Проверка значимости оценок коэффициентов модели
- •Критические значения коэффициента Стьюдента (t-критерия) для различной доверительной вероятности p и числа степеней свободы f:
- •10. Проверка адекватности модели
4.4. Построение графиков
Excel позволяет создавать диаграммы и графики довольно приемлемого качества. Excel имеется специальное средство — Мастер диаграмм, под руководством которого пользователь проходит все четыре этапа процесса построения диаграммы или графика.
Как
правило, построение графика начинают
с выделения диапазона, содержащего
данные,
по которым он должен быть построен.
Такое начало упрощает дальнейший
ход построения графика. Однако диапазон
с исходными данными можно делить
и на втором этапе диалога с МАСТЕРОМ
ДИАГРАММ.
В Еxcel
2003 МАСТЕР
ДИАГРАММ
находится в меню в виде кнопки
или диаграмму можно создать путем
нажатия на вкладку ВСТАВКА
и в открывшемся списке найти пункт
ДИАГРАММА.
В
Excel 2007 также находим вкладку
ВСТАВКА (рис.
3).
Рис. 3. МАСТЕР ДИАГРАММ в Excel 2007
Наиболее просто выделить диапазон исходных данных, в котором эти данные находятся в смежных рядах (столбцах или строках), — надо щелкнуть по левой верхней ячейке диапазона и затем протащить указатель мыши до правой нижней ячейки диапазона. При выделении данных, находящихся в несмежных рядах, указатель мыши перетаскивают по выделяемым рядам при нажатой клавише Ctrl. Если один из рядов данных имеет ячейку с названием, остальные выделенные ряды также должны иметь соответствующую ячейку, даже если она пустая.
Для проведения регрессионного анализа лучше всего использовать диаграмму типа Точечная (рис. 30). При ее построении Excel воспринимает первый ряд выделенного диапазона исходных данных как набор значений аргумента функций, графики которых нужно построить (один и тот же набор для всех функций). Следующие ряды воспринимаются как наборы значений самих функций (каждый ряд содержит значения одной из функций, соответствующие заданным значениям аргумента, находящимся в первом ряду выделенного диапазона).
В Excel 2007 названия осей ставятся во вкладке меню МАКЕТ (рис. 4).
Рис. 4. Настойка названий осей графика в Excel 2007
Построение линий тренда
Для получения математической модели необходимо построить на графике линию тренда. В Excel 2003 и 2007 нужно щелкнуть правой кнопкой мыши на точки графика. Тогда в Excel 2003 появится вкладка с перечнем пунктов, из которых выбираем ДОБАВИТЬ ЛИНИЮ ТРЕНДА (рис. 5).
Рис. 5. ДОБАВИТЬ ЛИНИЮ ТРЕНДА
После нажатия на пункт ДОБАВИТЬ ЛИНИЮ ТРЕНДА появится окно ЛИНИЯ ТРЕНДА (рис. 6). Во вкладке ТИП можно выбрать следующие типы линий: линейная, логарифмическая, экспоненциальная, степенная, полиномиальная, линейная фильтрация.
Во вкладке ПАРАМЕТРЫ (рис. 7)устанавливаем флажок напротив пунктов ПОКАЗЫВАТЬ УРАВНЕНИЕ НА ДИАГРАММЕ, тогда на графике появится математическая модель данной зависимости. Также флажок ставим напротив пункта ПОКАЗЫВАТЬ НА ДИАГРАММЕ ВЕЛИЧИНУ ДОСТОВЕРНОСТИ АППРОКСИМАЦИИ (R^2). Чем ближе величина достоверности аппроксимации к 1, тем ближе подходит выбранная кривая к точкам на графике. Далее нажимаем на кнопку ОК. На графике появится линия тренда, соответствующее ей уравнение и величина достоверности аппроксимации.
Рис. 6. Окно ЛИНИЯ ТРЕНДА в Excel 2003
Рис. 7. Вкладка ПАРАМЕТРЫ
В Excel 2007 после того, как щелкнем правой кнопкой мыши на точки графика, появится список пунктов меню, из которого ВЫБИРАЕМ ДОБАВИТЬ ЛИНИЮ ТРЕНДА (рис. 8).
Рис. 8. ДОБАВИТЬ ЛИНИЮ ТРЕНДА
Далее откроется окно ФОРМАТ ЛИНИИ ТРЕНДА с вкладкой ПАРАМЕТРЫ ЛИНИИ ТРЕНДА (рис. 9).
Рис. 9. Вкладка ПАРАМЕТРЫ ЛИНИИ ТРЕНДА
Устанавливаем необходимые флажки и нажимаем кнопку ЗАКРЫТЬ.
На графике появится линия тренда, соответствующее ей уравнение и величина достоверности аппроксимации.
