- •Введение
- •1. Основные понятия и определения
- •Факторы
- •Определение фактора
- •Требования, предъявляемые к факторам при планировании эксперимента
- •Требования к совокупности факторов
- •2. Представление результатов экспериментов
- •3. Разложение функции отклика в степенной ряд, кодирование факторов
- •4. Однофакторный факторный эксперимент
- •4.1. Регрессионный анализ
- •Последовательность проведения регрессионного анализа
- •4.2. Метод наименьших квадратов
- •4.3. Регрессионные модели первого и второго порядка
- •4.4. Построение графиков
- •Построение линий тренда
- •4.5. Линейная функция
- •4.6. Логарифмическая, степенная и экспоненциальная функции
- •4.7. Полиномиальная функция
- •4.8. Проверка адекватности модели
- •4.9. Проверка значимости параметров модели и ее адекватности
- •4.10. Некоторые нелинейные модели, сводящиеся к линейным
- •Полиномиальная модель
- •4.11. Множественная линейная регрессия
- •4.12. Регрессия в программе Excel
- •4.13. Корреляционный анализ
- •5. Полный факторный эксперимент
- •5.1. Выбор факторов
- •5.2. Матричные преобразования при обработке результатов эксперимента
- •5.3. Ортогональное планирование эксперимента
- •4. Планы полного факторного эксперимента 2n (планы пфэ 2n)
- •1.5.3. Алгоритм пфэ при неравном числе параллельных опытов.
- •5.5. Планы дробного факторного эксперимента (планы дфэ)
- •1.6. Факторный эксперимент второго порядка
- •5.6. Насыщенные планы первого порядка
- •5.7. Планы второго порядка
- •5.7.1. Ортогональный центрально-композиционный план второго порядка
- •5.7.2. Планы второго порядка с единичной областью планирования
- •5.8. Рототабельные планы
- •5.8.1. Рототабельный ортогональный центрально-композиционный план
- •5.9. Планы для описания поверхности отклика
- •5.9.1. Композиционные планы
- •5.9.2. Композиционные планы типа Вn
- •5.10. Планы для оценки влияния факторов. Планы на латинских квадратах
- •5.11. Планы для экспериментирования в условиях дрейфа
- •Факторный эксперимент при изучении смесевых систем
- •2.1.2. Алгоритм симплекс-решетчатых планов неполного третьего порядка для трехкомпонентной смеси.
- •. Насыщенный и сверхнасыщенный планы факторного эксперимента
- •6. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта.
- •7. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена.
- •8. Дисперсионный анализ
- •8. Проверка значимости оценок коэффициентов модели
- •Критические значения коэффициента Стьюдента (t-критерия) для различной доверительной вероятности p и числа степеней свободы f:
- •10. Проверка адекватности модели
Последовательность проведения регрессионного анализа
Формулировка задачи.
Идентификация переменных (определение входных и выходных переменных).
Сбор статистических данных.
Спецификация функции регрессии (определение вида модели).
Оценивание параметров функции регрессии.
Оценка точности регрессионного анализа:
1) Проверка адекватности всей модели, т.е. согласуются ли предсказанные значения выходной величины с наблюдаемыми данными;
2) Проверка значимости параметров модели, т.е. значимо ли они отличаются от нуля или нет.
Интерполяция результатов, анализ, оптимизация и прогнозирование.
4.2. Метод наименьших квадратов
Метод наименьших квадратов — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки.
Метод наименьших квадратов применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений.
Когда искомая величина может быть измерена непосредственно, как, например, длина отрезка или угол, то, для увеличения точности, измерение производится много раз, и за окончательный результат берут арифметическое среднее из всех отдельных измерений. Это правило арифметической середины основывается на соображениях теории вероятностей; легко показать, что сумма квадратов уклонений отдельных измерений от арифметической середины будет меньше, чем сумма квадратов уклонений отдельных измерений от какой бы то ни было другой величины. Само правило арифметической середины представляет, следовательно, простейший случай метода наименьших квадратов.
Для регрессионной модели первого порядка функция имеет вид:
Если
дисперсии выходного параметра для
каждого уровня фактора однородны, то
для определения коэффициентов регрессии
в
уравнении можно применять метод
наименьших квадратов.
Коэффициенты регрессионной модели определяются по формулам:
4.3. Регрессионные модели первого и второго порядка
Уравнением регрессии Y от X называют функциональную зависимость у=f(x), а ее график – линией регрессии.
При обработке экспериментальных данных одной из важных задач является задача определения вида функциональной зависимости, наилучшим образом описывающей экспериментальные связано с тем, что изначально правильно подобранный вид адекватной математической модели освобождает исследователя от повторных вычислений и тем самым повышает эффективность исследовательской работы.
В общем случае различают два вида уравнений регрессии (эмпирических моделей) — нелинейные, статистический анализ которых осуществляется методом «нелинейной регрессии и линейные, статистический анализ которых проводится методом «линейной регрессии».
Для набора нелинейных эмпирических функций в настоящее время существуют два основных метода:
линеаризация, т. е. приведение нелинейных эмпирических функций к линейному виду с помощью специальных пpeобразований.
аппроксимация исследуемых зависимостей многочленами (параболами).
