
- •Введение
- •1. Основные понятия и определения
- •Факторы
- •Определение фактора
- •Требования, предъявляемые к факторам при планировании эксперимента
- •Требования к совокупности факторов
- •2. Представление результатов экспериментов
- •3. Разложение функции отклика в степенной ряд, кодирование факторов
- •4. Однофакторный факторный эксперимент
- •4.1. Регрессионный анализ
- •Последовательность проведения регрессионного анализа
- •4.2. Метод наименьших квадратов
- •4.3. Регрессионные модели первого и второго порядка
- •4.4. Построение графиков
- •Построение линий тренда
- •4.5. Линейная функция
- •4.6. Логарифмическая, степенная и экспоненциальная функции
- •4.7. Полиномиальная функция
- •4.8. Проверка адекватности модели
- •4.9. Проверка значимости параметров модели и ее адекватности
- •4.10. Некоторые нелинейные модели, сводящиеся к линейным
- •Полиномиальная модель
- •4.11. Множественная линейная регрессия
- •4.12. Регрессия в программе Excel
- •4.13. Корреляционный анализ
- •5. Полный факторный эксперимент
- •5.1. Выбор факторов
- •5.2. Матричные преобразования при обработке результатов эксперимента
- •5.3. Ортогональное планирование эксперимента
- •4. Планы полного факторного эксперимента 2n (планы пфэ 2n)
- •1.5.3. Алгоритм пфэ при неравном числе параллельных опытов.
- •5.5. Планы дробного факторного эксперимента (планы дфэ)
- •1.6. Факторный эксперимент второго порядка
- •5.6. Насыщенные планы первого порядка
- •5.7. Планы второго порядка
- •5.7.1. Ортогональный центрально-композиционный план второго порядка
- •5.7.2. Планы второго порядка с единичной областью планирования
- •5.8. Рототабельные планы
- •5.8.1. Рототабельный ортогональный центрально-композиционный план
- •5.9. Планы для описания поверхности отклика
- •5.9.1. Композиционные планы
- •5.9.2. Композиционные планы типа Вn
- •5.10. Планы для оценки влияния факторов. Планы на латинских квадратах
- •5.11. Планы для экспериментирования в условиях дрейфа
- •Факторный эксперимент при изучении смесевых систем
- •2.1.2. Алгоритм симплекс-решетчатых планов неполного третьего порядка для трехкомпонентной смеси.
- •. Насыщенный и сверхнасыщенный планы факторного эксперимента
- •6. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта.
- •7. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена.
- •8. Дисперсионный анализ
- •8. Проверка значимости оценок коэффициентов модели
- •Критические значения коэффициента Стьюдента (t-критерия) для различной доверительной вероятности p и числа степеней свободы f:
- •10. Проверка адекватности модели
Факторы
После того как выбран объект исследования и параметр оптимизации, нужно включить в рассмотрение все существенные факторы, которые могут влиять на процесс. Если какой-либо существенный фактор окажется неучтенным, то это может привести к неприятным последствиям. Так, если неучтенный фактор произвольно флуктуировал – принимал случайные значения, которые экспериментатор не контролировал, – это значительно увеличит ошибку опыта. При поддержании фактора на некотором фиксированном уровне может быть получено ложное представление об оптимуме, так как нет гарантии, что фиксированный уровень является оптимальным.
Определение фактора
Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. Факторы соответствуют способам воздействия на объект исследования.
Также, как и параметр оптимизации, каждый фактор имеет область определения. Мы будем считать фактор заданным, если вместе с его названием указана область его определения. Под областью определения понимается совокупность всех значений, которые в принципе может принимать данный фактор, Ясно, что совокупность значений фактора, которая используется в эксперименте, является подмножеством из множества значений, образующих область определении.
Область определения может быть непрерывной и дискретной. Однако в тех задачах планирования эксперимента, которые мы собираемся рассматривать, всегда используются дискретные области определения. Так, для факторов с непрерывной областью определения, таких, как температура, время, количество вещества и т. п., всегда выбираются дискретные множества уровней.
В практических задачах области определения факторов, как правило, ограничены. Ограничения могут носить принципиальный либо технический характер.
Произведем классификацию факторов и зависимости от того, является ли фактор переменной величиной, которую можно оценивать количественно: измерять, взвешивать, титровать и т.п., или же он – некоторая переменная, характеризующаяся качественными свойствами.
Факторы разделяются на количественные и качественные. Качественные факторы – это разные вещества, разные технологические способы, аппараты, исполнители и т. д.
Хотя качественным факторам не соответствует числовая шкала в том смысле, как это понимается для количественных факторов, однако можно построить условную порядковую шкалу, которая ставит в соответствие уровням качественного фактора числа натурального ряда, т. е. производит кодирование. Порядок уровней может быть произволен, но после кодирования он фиксируется.
В ряде случаев граница между понятием качественного и количественного фактора весьма условна. Пусть, например, при изучении воспроизводимости результатов химического анализа надо установить влияние положения тигля с навеской в муфельной печи. Можно разделить под печи на квадраты и считать номера квадратов уровнями качественного фактора, определяющего положение тигля. Вместо этого можно ввести два количественных фактора – ширину и длину пода печи. Качественным факторам не соответствует числовая шкала, и порядок уровней факторов не играет роли.