- •Введение
- •1. Основные понятия и определения
- •Факторы
- •Определение фактора
- •Требования, предъявляемые к факторам при планировании эксперимента
- •Требования к совокупности факторов
- •2. Представление результатов экспериментов
- •3. Разложение функции отклика в степенной ряд, кодирование факторов
- •4. Однофакторный факторный эксперимент
- •4.1. Регрессионный анализ
- •Последовательность проведения регрессионного анализа
- •4.2. Метод наименьших квадратов
- •4.3. Регрессионные модели первого и второго порядка
- •4.4. Построение графиков
- •Построение линий тренда
- •4.5. Линейная функция
- •4.6. Логарифмическая, степенная и экспоненциальная функции
- •4.7. Полиномиальная функция
- •4.8. Проверка адекватности модели
- •4.9. Проверка значимости параметров модели и ее адекватности
- •4.10. Некоторые нелинейные модели, сводящиеся к линейным
- •Полиномиальная модель
- •4.11. Множественная линейная регрессия
- •4.12. Регрессия в программе Excel
- •4.13. Корреляционный анализ
- •5. Полный факторный эксперимент
- •5.1. Выбор факторов
- •5.2. Матричные преобразования при обработке результатов эксперимента
- •5.3. Ортогональное планирование эксперимента
- •4. Планы полного факторного эксперимента 2n (планы пфэ 2n)
- •1.5.3. Алгоритм пфэ при неравном числе параллельных опытов.
- •5.5. Планы дробного факторного эксперимента (планы дфэ)
- •1.6. Факторный эксперимент второго порядка
- •5.6. Насыщенные планы первого порядка
- •5.7. Планы второго порядка
- •5.7.1. Ортогональный центрально-композиционный план второго порядка
- •5.7.2. Планы второго порядка с единичной областью планирования
- •5.8. Рототабельные планы
- •5.8.1. Рототабельный ортогональный центрально-композиционный план
- •5.9. Планы для описания поверхности отклика
- •5.9.1. Композиционные планы
- •5.9.2. Композиционные планы типа Вn
- •5.10. Планы для оценки влияния факторов. Планы на латинских квадратах
- •5.11. Планы для экспериментирования в условиях дрейфа
- •Факторный эксперимент при изучении смесевых систем
- •2.1.2. Алгоритм симплекс-решетчатых планов неполного третьего порядка для трехкомпонентной смеси.
- •. Насыщенный и сверхнасыщенный планы факторного эксперимента
- •6. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта.
- •7. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена.
- •8. Дисперсионный анализ
- •8. Проверка значимости оценок коэффициентов модели
- •Критические значения коэффициента Стьюдента (t-критерия) для различной доверительной вероятности p и числа степеней свободы f:
- •10. Проверка адекватности модели
5.7.2. Планы второго порядка с единичной областью планирования
Так как ОЦКП и РОЦКП - композиционные планы, то при естественной области планирования “звездные” точки могут выходить за пределы единичного гиперкуба и единичного гипершара. Для вписывания плана в область единичного гипершара необходимо изменить значение факторов путем умножения их на коэффициент
.
Так при n=2,
.
Значение факторов в ОЦКП и РОЦКП при переходе от естественной области планирования к единичному гипершару, при n = 2.
U |
ОЦКП |
РЦКП |
||
|
|
|
|
|
1 |
-0,707 |
-0,707 |
-0,707 |
-0,707 |
2 |
+0,707 |
-0,707 |
+0,707 |
-0,707 |
3 |
-0,707 |
+0,707 |
-0,707 |
+0,707 |
4 |
+0,707 |
+0,707 |
+0,707 |
+0,707 |
5 |
-0,707 |
0 |
-1 |
0 |
6 |
+0,707 |
0 |
+1 |
0 |
7 |
0 |
-0,707 |
0 |
-1 |
8 |
0 |
+0,707 |
0 |
+1 |
9 |
0 |
0 |
0 |
0 |
10 |
- |
0 |
0 |
|
11 |
- |
0 |
0 |
|
12 |
- |
0 |
0 |
|
13 |
- |
0 |
0 |
|
14 |
- |
0 |
0 |
|
15 |
- |
0 |
0 |
|
16 |
- |
0 |
0 |
|
Могут использоваться рототабельные планы с точками плана в вершинах других, кроме квадрата (куба, суперкуба), правильных многогранников, вписанных в область единичного круга (шара, гипершара). В рототабельном плане на основе N0-угольника присутствуют N0 отличающихся точек на окружности, с радиусом R1=1, и n0 совпадающих точек в центре плана, с радиусом R2=0. При n=2 для квадратичного полинома при шести его членах число отличающихся точек плана должно быть не менее шести. В планах на основе пятиугольника (шестиугольника или семиугольника) присутствуют 6 (7 или 8) отличающихся точек, что меньше чем в ОЦКП и РОЦКП, у которых 9 отличающихся точек. При соответствующем выборе многоугольника можно сформировать насыщенный рототабельный план второго порядка. Значения факторов в точках плана определяются типом многоугольника.
5.8. Рототабельные планы
Рототабельные планы – это планы, у которых точки плана располагаются на окружностях (сферах, гиперсферах). У рототабельного плана первого порядка точки плана располагаются на одной окружности (сфере, гиперсфере) с радиусом R
,
где V=1,…, N - номер точки плана, i =1,…, n – номер фактора.
В таком случае точность оценивания функции отклика по любому направлению факторного пространства (для всех точек плана) одинаковая.
Рототабельный план может быть симметричным, когда точки плана располагаются симметрично друг друга. Рассмотренный ранее план ПФЭ 2n – рототабельный симметричный план первого порядка.
У рототабельных планов второго порядка точки плана располагаются на двух концентрических гиперсферах с радиусами R1 и R2 . В таких планах
,
для V =1,…, N0 и
,
для W=1,…, n0,
где V и W – текущие номера точек плана в двух подмножествах опытов N0 и n0 из их общего количества N, относящихся к двум разным концентрическим сферам. Одна из сфер может быть вырожденной, когда R2=0. Рассмотренный ранее ортогональный центрально-композиционный план второго порядка (ОЦКП) не является рототабельным планом, так как его точки лежат на трех концентрических окружностях (сферах, гиперсферах). При n=2 это очевидно из рис. 37. “Звездные” точки плана и точки плана ПФЭ 2n лежат на разных окружностях.
Рис. 37. Расположение точек ОЦКП на трех окружностях
Рототабельный план может быть ортогональным, если выполняется условие
,
где i=1,…,m, j=1,…,n, m>n, i≠j - номера столбцов плана.
