Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Коррозия металлов. Методы защиты металлов от ко...doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
129.54 Кб
Скачать

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Утверждено на заседании

кафедры химии 10.06.2011 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по дисциплине "Химия"

По теме: «коррозия металлов. Методы защиты металлов от коррозии»

для бакалавров по направлениям

"Строительство", "Стандартизация и метрология", "Товароведение", "Технология художественной обработки материалов", "Техносферная безопасность", "Эксплуатация транспортнотехнических машин и комплексов", "Технология транспортных процессов" всех профилей

Ростов-на-Дону

2011

УДК 541.2

Методические указания по теме «Методы защиты металлов от коррозии».- Ростов-н∕Д: Рост. гос., строит. ун-т. 2011 - 14 с.

Рассмотрены контроль коррозионного процесса, методы защиты металлов и принцип их выбора. В экспериментальной части дана методика выполнения лабораторной работы.

Составитель: канд.хим.наук, доц. Л.М. Астахова

Редактор Т.М.Климчук

Темплан 2011 г., поз.

Подписано в печать

Формат 60х84/16. Бумага писчая. Ризограф.

Уч.-изд.л. 0,5. Тираж 100 экз. Заказ

Редакционно-издательский центр

Ростовского государственного строительного университета

344022, Ростов-на-Дону, ул. Социалистическая, 162

© Ростовский государственный

строительный университет, 2011

1. Коррозия металлов

В силу широчайшего использования различных металлических конструк-ций, аппаратов, приборов коррозионный процесс наносит огромный ущерб на-родному хозяйству. Любой вопрос новой техники сейчас же вызывает необходи-мость решения проблем в области корро-зии. Защита металлов от коррозии не-возможна без знания закономерностей течения этого процесса.

К о р р о з и я - это процесс самопроизвольного разрушения металлов вследствие их взаимодействия с окружающей средой.

Свободный металл (Ме) является термодинамически неустойчивой формой по сравне-нию с ионной (Ме+n) – ведь в природе металлы, как правило, встреча-ются не в самородном состоянии, а в виде минералов и руд (соли или оксиды ме-таллов).Этим и объясняется само-произвольное разрушение большинства метал-лов. Судить о степени термодинамической не-стабильности можно по величине стандартного электродного потенциала – чем отрицатель-нее эта величина, тем в большей степени металл будет подвержен коррозионному разруше-нию (см. таблицу).

Коррозионный процесс относится к окислительно-восстановительным и включает в себя две сопряженные реакции – окисление и восстановление, например Ме + Ок → Ме+n + Окn ,

где окисление: Ме − ne → Ме+n ;

восстановление: Ок + ne → Окn .

В зависимости от механизма протекания этих сопряженных реакций коррозия бывает химической или электрохимической.

Химическая коррозия подразумевает процесс взаимодействия металла с окружающей средой за счет гетерогенной химической реакции (атом металла непосредственно взаимо-действует с молекулой реагента и переходит в ионное состояние без переноса электрона через компактный металл). К химической коррозии относятся окисление металлов при вы-соких температурах в газовой атмосфере либо разрушение металла при его соприкоснове-нии с растворами неэлектролитов.

Электрохимическая коррозия протекает с разделением анодной (окисле-ние) и катодной (восстановление)реакций либо в пространстве (по поверхности), либо во времени (если они протекают в одной точке п оверхности). Возникает эта коррозия на границе раздела фаз «металл - электролит» и сопровождается перемещением электронов с одних участков ме-талла к другим, т.е. появлением электрического тока. К ней относят:

- атмосферную коррозию во влажной газовой или воздушной атмосфере;

- подземную коррозию;

- жидкостную коррозию;

- электрокоррозию под действием блуждающих токов и др.

В зависимости от характера разрушений, сопровождающих процесс элект-рохимической коррозии, различают с п л о ш н у ю коррозию, захватывающую всю поверхность металла, и м е с т н у ю, локализующуюся на отдельных участках:

- коррозия пятнами (диаметр поражения велик по сравнению с его глубиной);

- язвенная коррозия (диаметр поражения мал, велика глубина проникновения);

- питтинговая коррозия (точечное поражение, проходящее часто через всю толщу металла) и др.

Скорость коррозии может быть выражена различными способами, однако чаще пользуются весовым, глубинным и токовым показателями.

Весовой или массовый показатель скорости коррозии численно равен потере массы за единицу времени, отнесенную к единице площади:

кор = ∆ m/τS (г/см2 ч).

Глубинный показатель оценивает скорость коррозии по глубине проник-новения коррозионного разрушения в толщу металла за определенный проме-жуток времени: Пгл (мм/год).

Токовый показатель - плотность тока: i (А/см2).

Стандартные электродные потенциалы некоторых металлов (Е) и общая термодинамическая характеристика их коррозионной стойкости по отношению к водным растворам

Термодинамическая стабильность металла

Металл и его электродный потенциал (Е, В)

1. Металлы повышенной нестабильности (неблагородные). Могут корродировать даже в нейтральных средах, не содержащих окислителей

Li (-3,045) Na (-2,714) Cr(II)(-0.913)

K (-2,925) Mg (-2,370) Zn (-0,762)

Ba(-2,900) Be (-1,850) Cr(III)(-0,740)

Ca(-2,870) Al (-1,670) Fe(II)(-0,440)

2. Металлы нестабильные. Устойчивы в ней-тральных средах при отсутствии кислорода, в кислых средах могут корродировать и в от-сутствие кислорода

Cd (-0,402) Pb (-0,126)

Co (-0,277) Fe(III) (-0,037)

Ni (-0,250)

Sn(II) (-0,136)

3. Металлы промежуточной стабильности (полублагородные). В отсутствие О2 и окис-лителей устойчивы в кислых и нейтральных средах

Sn(IV) (+0,007) Ag (+0,799)

Cu(II) (+0,337)

Cu(I) (+0,521)

Hg(I) (+789)

4. Металлы высокой стабильности (благород-ные) не корродируют в нейтральных средах при наличии О2. Могут корродировать в кислых средах при наличии О2 или окислителей

Hg(II) (+0,854)

Pd (II) (+0,987)

Ir (II) (+1,156)

Pt (III) (+1,190)

5. Металлы полной стабильности. Устойчивы в кислых средах при наличии О2 . Могут растворяться в комплексообразователях при наличии окислителей

Au (III) (+1,500)

Au(I) (+1,680)

Рассмотрим электрохимическую коррозию на примере действия серной кислоты на технический цинк, содержащий примеси железа. В этом случае на поверхности цинка возникает множество микрогальванопар, в которых цинк яв-ляется анодом (т.к. электродный потенциал цинка (-0,762 В) отрицательнее электродного потенциала железа (-0,44 В), а железо – катодом. Анодный про-цесс в этом случае – окисление цинка, катодный – восстановление окислителя, присутствующего в электролите (катионы водорода):

на аноде Zn - 2e = Zn+2 ионизация цинка (окисление);

на катоде 2Н+ + 2e = Н2↑ восстановление катионов водорода.

Поверхность цинка (анод) разрушается, высвободившиеся электроны перетека-ют к включениям железа (катод), на которых выделяется газообразный водород.

Помимо электрохимического растворения цинк может растворяться и в результате химического процесса: Zn + 2Н+ = Zn+2 + Н2↑ . Однако опыт показывает, что скорость растворения цинка в этом случае значительно ниже, чем скорость ионизации цинка как анода гальванопары. Вторичный процесс обусловлен взаимодействием образовавшихся катионов металла и кислотного остатка, присутствующего в электролите: Zn+2 + SO4-2 = ZnSO4. Таким обра-зом протекает коррозионный процесс в кислых средах.

Течение коррозионного процесса в нейтральных средах отличается от вышерассмотренного. Например: коррозия технического железа, покрытого пленкой влаги, на воздухе или электролите с нейтральной реакцией среды. Анодный процесс аналогичен – ионизируется металл; на катоде в этом случае восстанавливаются молекулы кислорода, растворенного в воде:

на аноде Fe - 2e = Fe+2 ионизация железа (окисление);

на катоде О2 + 2Н2О + 4е = 4ОН- восстановление кислорода.

Возможные вторичные процессы:

Fe+2 + 2ОН- = Fe(ОН)2, 4 Fe(ОН)2 + О2 + 2Н2О = 4Fe(ОН)3 .

Нередко продукты коррозии оказываются малорастворимыми и своим при-сутствием на поверхности металла защищают его от дальнейшего разрушения – пассивируют металл. Это могут быть оксиды, гидроксиды, соли.

П а с с и в а ц и е й или пассивностью металла называется такое его сос-тояние, в каком он не подвергается коррозионному разрушению. Это состояние может быть достигнуто как за счет действия соответствующих окислителей, так и в случае анодной поляризации. Целый ряд металлов уже в естественных усло-виях имеет на своей поверхности оксидную пленку, которая надежно защищает от воздействия агрессивных агентов окружающей среды. Такие металлы называ-ются самопассивирующимися. К ним относятся: алюминий (с термодинамичес-

кой точки зрения активный металл, но за счет поверхностной оксидной пленки коррозионностойкий), титан, ванадий, молибден, хром, никель и др.