
- •1 Влияние охлаждения деталей турбин на термодинамическое совершенство и ресурс
- •1.1 Общие тенденции развития двигателей
- •1.2 Обеспечение ресурса
- •1.3 Требования к системам охлаждения
- •1.4 Потери, связанные с охлаждением гтд
- •1.5 Термодинамический анализ
- •2 Анализ условий работы деталей осевых газовых турбин
- •2.1 Лопатки газовых турбин
- •2.1.1 Профиль проточной части и изменение параметров
- •2.1.2 Тепловое состояние лопаток
- •2.1.3 Нагрузки, действующие на лопатки
- •3.2 Эффективность охлаждения
- •3.3 Развитие систем охлаждения рабочих лопаток
- •3.3.1. Лопатки с внутренним конвективным охлаждением
- •3 Распределение температуры в сечении лопатки с пленочно-конвективным охлаждением .3.2 Лопатки с конвективно-заградительным охлаждением
- •3.3.3 Лопатки с пористым охлаждением
- •5 Задание граничных условий теплообмена на наружной и внутренней поверхности охлаждаемых лопаток
- •5.1 Изменение скорости и температуры в пограничном слое. «Греющая» и «охлаждающая» температура
- •5.2 Теплообмен в пограничном слое (конвективный теплообмен)
- •5.3 Теплообмен лопаток с газовым потоком
- •5.3.1 Определение температуры газа
- •5.3.1.2 Учет сегрегации потока в канале рабочего колеса
- •5.3.2 Особенности течения газа в решетках турбинных лопаток
- •5.3.2. Теплообмен между газом и поверхностью профиля лопатки
- •5.2 Теплообмен лопаток с охлаждающим воздухом
- •5.2.1 Гидравлический расчет системы подвода охлаждающего воздуха
- •5.2.2 Определение температуры охлаждающего воздуха на входе в расчетное сечение лопатки
- •5.2.3 Теплообмен в каналах охлаждения
- •5.3 Эффективность конвективного охлаждения
- •5.3.1 Методика определения эффективности охлаждения
- •5.3.2 Влияние подогрева воздуха в канале на эффективность конвективного охлаждения лопатки
- •6 Термические напряжения и их анализ
- •6.1 Термопрочностные явления в деталях
- •6.2 Температурные напряжения в изотермичном стесненном стержне
- •6.3 Температурные напряжения в неравномерно нагретом стержне с жесткой концевой пластиной (бандажом)
- •6.4 Температурные напряжения в стержне со свободным торцом
- •6.7 Малоцикловая термическая усталость
- •7 Особенности определения напряженно- деформированного состояния охлаждаемых лопаток
- •7.1 Гипотеза плоских сечений
- •7.2 Упругогеометрические характеристики сечения
- •7.3 Растяжение при неравномерном нагреве
- •7.4 Изгиб при неравномерном нагреве
- •7.5 Температурные напряжения в неравномерно нагретом стержне
- •7.6 Определение суммарных напряжений в сечении лопатки
- •8 Оптимизация системы охлаждения лопатки
1.5 Термодинамический анализ
Проанализируем влияние температуры газа на удельную работу цикла двигателя.
Б
Рисунок
1.6 - Схема проточной части ТРД
Рисунок
1.7 - Идеальная диаграмма
рабочего
процесса ТРД
(1.1)
откуда видно, что с повышением Тг* удельная работа растет линейно.
Применение
охлаждения деталей требует отбора
охлаждающего воздуха от компрессора,
в результате чего мощность турбины
снижается. Представленная на рис. 1.7 в
удельных параметрах термодинамическая
диаграмма не изменяется, а в выражении
для удельной работы следует учесть
значение относительного отбора воздуха
на охлаждение
:
(1.2)
Характер зависимости L от Тг*, как и в предыдущем случае – линейный.
К
Очевидно, при сохранении схемы системы охлаждения для поддержания заданной температуры деталей с увеличением Тг* требуется увеличивать количество охлаждающего воздуха. Предположим, что расход охлаждающего воздуха пропорционален температуре:
.
(1.3)
П
(1.4)
Таким образом, увеличение относительного расхода охлаждающего воздуха с повышением температуры газа еще сильнее замедляет рост удельной работы цикла.
Как будет показано в дальнейшем, зависимость расхода охлаждающего воздуха, потребного для поддержания заданной температуры деталей, от температуры газа – нелинейная и имеет вид
(1.5)
П
Рисунок
1.8 - Зависимость расхода охлаждающего
воздуха от температуры газа: 1 –
формула (3); 2 – формула (5)
Рисунок
1.9 - Зависимость удельной работы цикла
от температуры газа:
1
– идеальная; 2 – при постоянном
относительном отборе воздуха;
3
– при линейной зависимости отборов
от Тг*;4 – при нелинейной
зависимости отбора от Тг*
(1.6)
На рис. 1.8 представлены зависимости (1.3) и (1.5), а на рис. 9 – зависимости удельной работы термодинамического цикла от температуры газа, соответствующие формулам (1.1), (1.2), (1.4) и (1.6).
Таким образом, из-за увеличения потребных отборов воздуха на охлаждение рост удельной работы замедляется, и дальнейшее повышение температуры газа становится нецелесообразным.
Дальнейший прогресс становится возможным только в случае применения новых способов охлаждения.
В рамках рассмотренных зависимостей эти новые способы должны уменьшать значения коэффициентов k и q формулы (1.5).
2 Анализ условий работы деталей осевых газовых турбин
2.1 Лопатки газовых турбин
2.1.1 Профиль проточной части и изменение параметров
На рис. 2.1 представлены профили лопаток и основные параметры потока в ступени газовой турбины. Видно, что скорость W движения воздуха относительно лопатки изменяется. На выходе из соплового аппарата поток разгоняется до скорости звука и даже больше. Поэтому в косом срезе возможно образование скачков уплотнения в результате взаимодействия струй, вытекающих из соседних каналов.
С
Рисунок
2.1 - Профиль ступени турбины и параметры
газового потока
В дальнейшем мы будем считать, что проблема профилирования решена, и необходимо лишь охладить лопатку так, чтобы обеспечить ее работоспособность с использованием минимального расхода охлаждающего воздуха. Однако реальный процесс проектирования – итеративный, требующий повторного профилирования после уточнения параметров охлаждения.
В результате профилирования известно изменение параметров в проточной части (в общем случае – трехмерное). Локальные значения скорости, температуры и давления изменяются по профилю лопатки.