
- •1 Влияние охлаждения деталей турбин на термодинамическое совершенство и ресурс
- •1.1 Общие тенденции развития двигателей
- •1.2 Обеспечение ресурса
- •1.3 Требования к системам охлаждения
- •1.4 Потери, связанные с охлаждением гтд
- •1.5 Термодинамический анализ
- •2 Анализ условий работы деталей осевых газовых турбин
- •2.1 Лопатки газовых турбин
- •2.1.1 Профиль проточной части и изменение параметров
- •2.1.2 Тепловое состояние лопаток
- •2.1.3 Нагрузки, действующие на лопатки
- •3.2 Эффективность охлаждения
- •3.3 Развитие систем охлаждения рабочих лопаток
- •3.3.1. Лопатки с внутренним конвективным охлаждением
- •3 Распределение температуры в сечении лопатки с пленочно-конвективным охлаждением .3.2 Лопатки с конвективно-заградительным охлаждением
- •3.3.3 Лопатки с пористым охлаждением
- •5 Задание граничных условий теплообмена на наружной и внутренней поверхности охлаждаемых лопаток
- •5.1 Изменение скорости и температуры в пограничном слое. «Греющая» и «охлаждающая» температура
- •5.2 Теплообмен в пограничном слое (конвективный теплообмен)
- •5.3 Теплообмен лопаток с газовым потоком
- •5.3.1 Определение температуры газа
- •5.3.1.2 Учет сегрегации потока в канале рабочего колеса
- •5.3.2 Особенности течения газа в решетках турбинных лопаток
- •5.3.2. Теплообмен между газом и поверхностью профиля лопатки
- •5.2 Теплообмен лопаток с охлаждающим воздухом
- •5.2.1 Гидравлический расчет системы подвода охлаждающего воздуха
- •5.2.2 Определение температуры охлаждающего воздуха на входе в расчетное сечение лопатки
- •5.2.3 Теплообмен в каналах охлаждения
- •5.3 Эффективность конвективного охлаждения
- •5.3.1 Методика определения эффективности охлаждения
- •5.3.2 Влияние подогрева воздуха в канале на эффективность конвективного охлаждения лопатки
- •6 Термические напряжения и их анализ
- •6.1 Термопрочностные явления в деталях
- •6.2 Температурные напряжения в изотермичном стесненном стержне
- •6.3 Температурные напряжения в неравномерно нагретом стержне с жесткой концевой пластиной (бандажом)
- •6.4 Температурные напряжения в стержне со свободным торцом
- •6.7 Малоцикловая термическая усталость
- •7 Особенности определения напряженно- деформированного состояния охлаждаемых лопаток
- •7.1 Гипотеза плоских сечений
- •7.2 Упругогеометрические характеристики сечения
- •7.3 Растяжение при неравномерном нагреве
- •7.4 Изгиб при неравномерном нагреве
- •7.5 Температурные напряжения в неравномерно нагретом стержне
- •7.6 Определение суммарных напряжений в сечении лопатки
- •8 Оптимизация системы охлаждения лопатки
1.3 Требования к системам охлаждения
К системе охлаждения предъявляются следующие основные требования:
1. Обеспечение надежной работы элементов двигателя, работающих в условиях повышенных нагрузок и температур.
2. Минимальные затраты энергии на охлаждение, так как эта энергия берется из термодинамического цикла двигателя, и ее отборы приводят к снижению работы цикла, а значит тяги и мощности. Чтобы снизить энергию, расходуемую на охлаждение, необходимо:
- использовать как можно меньше охлаждающего воздуха;
- использовать воздух с возможно меньшим давлением;
- сократить утечки воздуха из каналов охлаждения на пути от мест отбора до охлаждаемых деталей;
- снижать гидравлическое сопротивление каналов, по которым движется охлаждающий воздух.
3. Обеспечение как можно более равномерного температурного поля охлаждаемых деталей. Температурная неравномерность приводит к возникновению температурных напряжений. Эти напряжения складываются с напряжениями от центробежных, газовых и других сил, что в конечном результате может снизить прочность деталей, несмотря на то, что они охлаждаются. Таким образом, неправильно спроектированная система охлаждения может ухудшить надежность деталей.
4. Минимальное воздействие отборов и подводов воздуха на характеристики узлов проточной части.
1.4 Потери, связанные с охлаждением гтд
При охлаждении двигателей возникают дополнительные потери. Они уменьшают положительный эффект от повышения температуры газа перед турбиной. Большинство перечисленных выше требований заключается в минимизации этих потерь. Основными потерями являются:
- термодинамические потери;
- затраты энергии на сжатие охлаждающего воздуха;
- затраты энергии на прокачку охлаждающего воздуха;
- потери при смешении охлаждающего воздуха с потоком газа в проточной части;
- потери, связанные с изменением геометрических характеристик профилей охлаждаемых лопаток по сравнению с неохлаждаемыми;
- потери от увеличения нестационарности потока в решетках профилей.
Проанализируем эти потери.
1.4.1 Термодинамические потери
При использовании воздушного охлаждения охлаждающий воздух отбирают в различных сечениях компрессора и подводят в различных сечениях турбины. Этот воздух не участвует в подводе тепла в камере сгорания. Воздух, который отбирают из промежуточных ступеней компрессора, сжимается не полностью. Попадая в проточную часть турбины, охлаждающий воздух смешивается с потоком газа и снижает его температуру. Все это приводит к снижению работы термодинамического цикла двигателя и будет проанализировано нами далее.
1.4.2 Затраты энергии на сжатие охлаждающего воздуха
На сжатие охлаждающего воздуха затрачивается энергия, и это приводит к потере полезной работы термодинамического цикла. Однако если этот воздух подводится к турбине, то он смешивается с газом и участвует в совершении работы расширения в последующих ступенях. Поэтому потери уменьшаются. Чем раньше подводится воздух, тем меньше эти потери. На 1% потерь на сжатие приходится 0,5-0,8% потерь работы цикла.
Воздух, охлаждающий диск последней ступени турбины и корпус ее последнего каскада, в работе турбины не участвует, однако выводится на вход в сопло и участвует в создании тяги.
Часть охлаждающего воздуха выходит в атмосферу. Это воздух, идущий на охлаждение заднего подшипника и в заднюю разгрузочную полость турбины.
1.4.3 Затраты энергии на прокачку охлаждающего воздуха
К этим потерям относятся:
- потери давления на преодоление гидравлического сопротивления на пути воздуха от места отбора до охлаждаемой детали;
- повышение температуры воздуха на этом пути из-за его подогрева;
- затраты энергии на разгон воздуха до окружной скорости, соответствующей месту его выхода из элементов ротора
1.4.4 Потери при смешении охлаждающего воздуха с потоком газа в проточной части
Пройдя по каналам охлаждающего тракта, воздух выходит в проточную часть турбины и смешивается с основным потоком газа. Если воздух выпускается на поверхности профилей лопаток, то смешение происходит в межлопаточном канале, Если же воздух выпускается из выходных кромок лопаток, то он смешивается с газом в осевом зазоре между соседними лопаточными венцами. Кроме того, воздух может попасть в проточную часть турбины из системы охлаждения ротора и корпуса.
П
Полные
профильные потери в решетке профилей
в зависимости от расхода воздуха
При выдуве воздуха из выходных кромок лопаток на величину потерь также влияет расположение перемычек в выходной щели: чем чаше и чем ближе к выходу они расположены, тем больше потери.
Однако выдув воздуха из щели в выходной кромке уменьшает донное сопротивление профиля и связанные с ним кромочные потери Поэтому потери от смешения частично компенсируются.
В случае выпуска воздуха из отверстий или щелей, расположенных в зоне входной кромки, на спинке или корытце лопатки, возникают дополнительные профильные потери, обусловленные его смешением с основным потоком газа, а также более ранним переходом ламинарного пограничного слоя в турбулентный. Величина этих потерь зависит от:
- места расположения выпускных отверстий вдоль профиля;
- угла выхода потока воздуха;
- скорости истечения воздуха;
- состояния и параметров пограничного слоя на участке выдува;
- протяженности участка выдува;
- уровня возмущений, которые вносит в пограничный слой выдуваемый воздух.
Выдуваемый воздух оказывает значительно большее влияние, если пограничный слой – ламинарный; влияние на турбулентный слой значительно меньше.
1.4.5 Потери, связанные с изменением геометрических характеристик профилей охлаждаемых лопаток по сравнению с неохлаждаемыми
Для уменьшения аэродинамического сопротивления профили лопаток необходимо делать тонкими. Однако это не позволяет разместить внутри лопаток каналы для охлаждающего воздуха. Поэтому профили лопаток делают толстыми, что приводит к увеличению аэродинамического сопротивления.
Кроме того, для улучшения охлаждения передней и задней кромок лопатки ее профиль специально укорачивают, чтобы приблизить кромки к каналам охлаждения. Это искажает форму профиля и увеличивает его аэродинамическое сопротивление. Охлаждение выходной кромки можно улучшить, если расположить в ней щель для прохода охлаждающего воздуха. Однако это требует увеличения толщины выходной кромки, что также увеличивает аэродинамическое сопротивление.
Искажение аэродинамических профилей приводит к росту потери не только в данной решетке профилей, но и в следующих за ней. Так, например, утолщение выходной кромки сопловых лопаток приводит к повышению интенсивности вихрей и увеличению неравномерности поля скоростей и давлений на входе в рабочие лопатки.
Увеличение радиуса входной кромки приводит к уменьшению длины участка с ламинарным пограничным слоем, что также увеличивает профильные потери.
1.4.6 Потери от увеличения нестационарности потока в решетках профилей
Кромочные следы, образующиеся за лопатками, обусловливают периодическую нестационарность полей скоростей и давлений на входе в последующий лопаточный венец. Это приводит к дополнительным потерям.
Выпуск охлаждающего воздуха через щели в выходных кромках существенно изменяет характер неравномерности поля скоростей и давлений потока в следе за решеткой. Скорость потока в ядре струи и ширина ядра увеличиваются с возрастанием расхода выдуваемого воздуха.
Увеличение ширины задней кромки для обеспечения вытекания охлаждающего воздуха приводит к увеличению неравномерности потока на входе в следующую решетку м к дополнительным потерям за счет нестационарности. Эта неравномерность и потери увеличиваются, если выдув происходит не только через входную кромку, но и через отверстия в боковой поверхности лопатки. В этом случае происходит дополнительная турбулизация потраничнгого слоя, утолщается закромочный след, возрастает неравномерность потока и соответственно растут потери.