Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
оптимальные статистические решения.doc
Скачиваний:
0
Добавлен:
03.12.2019
Размер:
1.91 Mб
Скачать

Тверской государственный университет

Кафедра информатики и методов оптимизации

ОПТИМАЛЬНЫЕ СТАТИСТИЧЕСКИЕ РЕШЕНИЯ

(Статистические игры)

Учебно-методическое пособие

ТВЕРЬ 2004

УДК 519.2 + 519.8

Автор-составитель кандидат технических наук, доцент В.О. Ашкеназы

Оптимальные статистические решения (Статистические игры): Учебно-методическое пособие. - Тверь: Тверской гос. ун-т, 2004. - 26 с.

Данное пособие содержит материалы для проведения лабораторных занятий и организации самостоятельной работы по дисциплине специализации "Оптимальные статистические решения (Статистические игры)". Изучается теория математических моделей принятия решений в условиях неопределённости и случайности, или так называемые статистические игры. Обсуждаются принципы построения оптимальных алгоритмов принятия решений на основе минимаксного и байесовского подходов. Пособие предназначается для студентов и специалистов, применяющих оптимальные статистические решения в своей учебной и практической деятельности.

Библиогр.: 15 назв.

© Ашкеназы В.О., 2004

© Тверской государственный университет, 2004

ПРЕДИСЛОВИЕ

Статистические игры как математические модели принятия оптимальных решений в условиях неопределённости и риска находят всё более широкое применение в экономике, технике, математической статистике. Поэтому изучение теории статистических игр и овладение практическими навыками их решения играют важную роль в процессе формирования специалиста по приложениям математики, способствуют глубокому осмысливанию ранее полученных знаний по методам оптимизации. теории вероятностей и математической статистике.

Данное пособие содержит материалы к практическим (лабораторным) занятиям по дисциплине специализации "Оптимальные статистические решения (статистические игры)", которые должны сопровождать соответствующий теоретический курс. При проведении этого практикума ставятся следующие основные задачи:

  1. углубить знание основных определений и утверждений, изучаемых в лекционном курсе;

  2. повторить необходимые разделы курса теории вероятностей и математической статистики, элементы выпуклого анализа;

  3. получить практические навыки в решении теоретико-игровых оптимизационных задач, описываемых математическими моделями типа статистических игр.

Самостоятельная работа студента при подготовке к практическим занятиям должна включать в себя повторение основных теоретических положений, изучение рекомендованной учебной и научной литературы, решение упражнений. При этом могут быть рекомендованы следующие этапы решения статистической игры:

  1. анализ структуры статистической игры и выявление возможностей редукции класса решающих правил на основе использования достаточных статистик, исключения рандомизации, применения принципа инвариантности, использования монотонных решающих правил;

  2. выбор подходящего априорного распределения или последовательности априорных распределений, построение соответствующих байесовских решающих правил и вычисление минимальных байесовских рисков;

  3. определение вида наименее благоприятного априорного распределения или уравнивающего решающего правила;

  4. отыскание минимаксного решающего правила, наименее благоприятного априорного распределения и значения игры.

Заметим, что здесь необходимо хорошее знание свойств наиболее часто используемых в приложениях дискретных и непрерывных распределений вероятностей и умение пользоваться формулой Байеса для условных распределений. Полезным приёмом, существенно облегчающим решение статистической игры, во многих случаях является применение принципа инвариантности. В задачах с конечным множеством состояний природы может оказаться полезной геометрическая интерпретация статистической игры.

В данном пособии рассматриваются статистические игры с фиксированным объёмом выборки; последовательным статистическим играм будет посвящено отдельное пособие. В каждом разделе даётся сводка основных теоретических положений, примеры решения задач и упражнения для практических и самостоятельных занятий, которые сопровождаются необходимыми методическими рекомендациями. При составлении упражнений использовались источники, указанные в списке литературы.

1. Введение

1.1. Неопределённость и случайность в задачах принятия решений

Математизация знаний связана с научным обоснованием методов принятия решений, наилучшим образом реализующих поставленные цели.

Имеется несколько уровней информированности лица, принимающего решение, об обстоятельствах дела и о последствиях принятых решений.

  1. Детерминированный уровень – принимается решение, максимизирующее выигрыш (полезность) в заданных, точно известных условиях.

Математический аппарат: методы математического анализа, комбинаторики, методы оптимизации (математическое программирование, теория оптимального управления).

  1. Стохастический (вероятностный) уровень – имеется некоторая информация о вероятностях возможных вариантов обстоятельств и последствий принимаемых решений. При этом обычно руководствуются оптимизацией среднего значения (математического ожидания) характеристики возможных последствий решения (так называемый "байесовский подход"). Принятие решения на вероятностном уровне равносильно принятию решения в условиях риска (получаемый результат – случаен).

Математический аппарат: теория вероятностей и математическая статистика. Возможен и более общий подход – использование теории нечётких множеств. В конечном счёте здесь имеет место редукция к решению детерминированной экстремальной задачи.

  1. Неопределённый уровень – лицо, принимающее решение, знает лишь множество вариантов обстоятельств дела и последствий своих решений, но не знает того конкретного варианта, который имеет место в действительности.

Математический аппарат принятия решений на неопределённом уровне – теория игр.

Неопределённость в знании обстоятельств и последствий принятия решений обычно связана с наличием ряда активных сторон, наделённых несовпадающими интересами и способных выбирать те или иные действия. Как правило, стороны заинтересованы в том. Чтобы сохранить в тайне свой образ действий – а это приводит к конфликтным условиям. Поэтому принято говорить, что теория игр есть теория математических (фор­мальных) моделей принятия решений в условиях конфликта.

Лицо, принимающее решение на таком неопределённом уровне, обычно ориентируется на наименее благоприятное для себя стечение обстоятельств и последствий (принцип максимина или гарантированного результата) и даже явление, содержательно не имеющее конфликтного характера – например, "борьба" с природой – формально моделируется как явление, наделённое чертами конфликта (в частности, природа может рассматриваться как антагонистический противник!).

Оптимальное решение в условиях неопределённости обычно отыскивается путём сведения к стохастическому уровню – допускают, что имеется некоторое априорное распределение вероятностей на множестве вариантов условий и ориентируются на наименее благоприятное распределение.

В реальных задачах принятия решения сочетаются все три уровня информированности. Однако, характерным для теории игр является наличие нестохастической неопределённости тех или иных компонент:

- прежде всего, решений, принимаемых другими участниками ("стратегическая" неопределённость);

- неопределёнными могут быть и "правила игры" – последствия принимаемых решений (целевая функция), структура множества действий (стратегий), имеющихся в распоряжении участников, и даже само число участников…