
- •1. Введение
- •1.1. Неопределённость и случайность в задачах принятия решений
- •1.2. Основные понятия теории антагонистических игр
- •1.3. Статистические игры
- •2. Структура статистической игры
- •2.1. Основные определения
- •2.2. Смешанные расширения статистической игры
- •3. Оптимальные решающие правила
- •3.1. Принципы выбора оптимальных стратегий в статистической игре
- •3.2. Геометрическая интерпретация статистической игры при конечном множестве
- •4. Редукция класса решающих правил
- •Достаточные статистики и их использование в статистических играх
- •Условия исключения рандомизации в статистических играх
- •Построение оптимальных решающих правил
- •Построение байесовских решающих правил
- •Построение минимаксных решающих правил (решение статистической игры)
- •Принцип инвариантности в статистических играх
- •Применение монотонных решающих правил
- •И наблюдается выборка объёма из нормального распределения со средним и единичной дисперсией. Решим эту статистическую игру.
- •Литература Основная
- •Дополнительная
- •Оглавление
Тверской государственный университет
Кафедра информатики и методов оптимизации
ОПТИМАЛЬНЫЕ СТАТИСТИЧЕСКИЕ РЕШЕНИЯ
(Статистические игры)
Учебно-методическое пособие
ТВЕРЬ 2004
УДК 519.2 + 519.8
Автор-составитель кандидат технических наук, доцент В.О. Ашкеназы
Оптимальные статистические решения (Статистические игры): Учебно-методическое пособие. - Тверь: Тверской гос. ун-т, 2004. - 26 с.
Данное пособие содержит материалы для проведения лабораторных занятий и организации самостоятельной работы по дисциплине специализации "Оптимальные статистические решения (Статистические игры)". Изучается теория математических моделей принятия решений в условиях неопределённости и случайности, или так называемые статистические игры. Обсуждаются принципы построения оптимальных алгоритмов принятия решений на основе минимаксного и байесовского подходов. Пособие предназначается для студентов и специалистов, применяющих оптимальные статистические решения в своей учебной и практической деятельности.
Библиогр.: 15 назв.
© Ашкеназы В.О., 2004
© Тверской государственный университет, 2004
ПРЕДИСЛОВИЕ
Статистические игры как математические модели принятия оптимальных решений в условиях неопределённости и риска находят всё более широкое применение в экономике, технике, математической статистике. Поэтому изучение теории статистических игр и овладение практическими навыками их решения играют важную роль в процессе формирования специалиста по приложениям математики, способствуют глубокому осмысливанию ранее полученных знаний по методам оптимизации. теории вероятностей и математической статистике.
Данное пособие содержит материалы к практическим (лабораторным) занятиям по дисциплине специализации "Оптимальные статистические решения (статистические игры)", которые должны сопровождать соответствующий теоретический курс. При проведении этого практикума ставятся следующие основные задачи:
углубить знание основных определений и утверждений, изучаемых в лекционном курсе;
повторить необходимые разделы курса теории вероятностей и математической статистики, элементы выпуклого анализа;
получить практические навыки в решении теоретико-игровых оптимизационных задач, описываемых математическими моделями типа статистических игр.
Самостоятельная работа студента при подготовке к практическим занятиям должна включать в себя повторение основных теоретических положений, изучение рекомендованной учебной и научной литературы, решение упражнений. При этом могут быть рекомендованы следующие этапы решения статистической игры:
анализ структуры статистической игры и выявление возможностей редукции класса решающих правил на основе использования достаточных статистик, исключения рандомизации, применения принципа инвариантности, использования монотонных решающих правил;
выбор подходящего априорного распределения или последовательности априорных распределений, построение соответствующих байесовских решающих правил и вычисление минимальных байесовских рисков;
определение вида наименее благоприятного априорного распределения или уравнивающего решающего правила;
отыскание минимаксного решающего правила, наименее благоприятного априорного распределения и значения игры.
Заметим, что здесь необходимо хорошее знание свойств наиболее часто используемых в приложениях дискретных и непрерывных распределений вероятностей и умение пользоваться формулой Байеса для условных распределений. Полезным приёмом, существенно облегчающим решение статистической игры, во многих случаях является применение принципа инвариантности. В задачах с конечным множеством состояний природы может оказаться полезной геометрическая интерпретация статистической игры.
В данном пособии рассматриваются статистические игры с фиксированным объёмом выборки; последовательным статистическим играм будет посвящено отдельное пособие. В каждом разделе даётся сводка основных теоретических положений, примеры решения задач и упражнения для практических и самостоятельных занятий, которые сопровождаются необходимыми методическими рекомендациями. При составлении упражнений использовались источники, указанные в списке литературы.
1. Введение
1.1. Неопределённость и случайность в задачах принятия решений
Математизация знаний связана с научным обоснованием методов принятия решений, наилучшим образом реализующих поставленные цели.
Имеется несколько уровней информированности лица, принимающего решение, об обстоятельствах дела и о последствиях принятых решений.
Детерминированный уровень – принимается решение, максимизирующее выигрыш (полезность) в заданных, точно известных условиях.
Математический аппарат: методы математического анализа, комбинаторики, методы оптимизации (математическое программирование, теория оптимального управления).
Стохастический (вероятностный) уровень – имеется некоторая информация о вероятностях возможных вариантов обстоятельств и последствий принимаемых решений. При этом обычно руководствуются оптимизацией среднего значения (математического ожидания) характеристики возможных последствий решения (так называемый "байесовский подход"). Принятие решения на вероятностном уровне равносильно принятию решения в условиях риска (получаемый результат – случаен).
Математический аппарат: теория вероятностей и математическая статистика. Возможен и более общий подход – использование теории нечётких множеств. В конечном счёте здесь имеет место редукция к решению детерминированной экстремальной задачи.
Неопределённый уровень – лицо, принимающее решение, знает лишь множество вариантов обстоятельств дела и последствий своих решений, но не знает того конкретного варианта, который имеет место в действительности.
Математический аппарат принятия решений на неопределённом уровне – теория игр.
Неопределённость в знании обстоятельств и последствий принятия решений обычно связана с наличием ряда активных сторон, наделённых несовпадающими интересами и способных выбирать те или иные действия. Как правило, стороны заинтересованы в том. Чтобы сохранить в тайне свой образ действий – а это приводит к конфликтным условиям. Поэтому принято говорить, что теория игр есть теория математических (формальных) моделей принятия решений в условиях конфликта.
Лицо, принимающее решение на таком неопределённом уровне, обычно ориентируется на наименее благоприятное для себя стечение обстоятельств и последствий (принцип максимина или гарантированного результата) и даже явление, содержательно не имеющее конфликтного характера – например, "борьба" с природой – формально моделируется как явление, наделённое чертами конфликта (в частности, природа может рассматриваться как антагонистический противник!).
Оптимальное решение в условиях неопределённости обычно отыскивается путём сведения к стохастическому уровню – допускают, что имеется некоторое априорное распределение вероятностей на множестве вариантов условий и ориентируются на наименее благоприятное распределение.
В реальных задачах принятия решения сочетаются все три уровня информированности. Однако, характерным для теории игр является наличие нестохастической неопределённости тех или иных компонент:
- прежде всего, решений, принимаемых другими участниками ("стратегическая" неопределённость);
- неопределёнными могут быть и "правила игры" – последствия принимаемых решений (целевая функция), структура множества действий (стратегий), имеющихся в распоряжении участников, и даже само число участников…