
- •1. Преобразователи постоянного напряжения
- •1.1. Основные типы импульсных преобразователей постоянного напряжения
- •Прямоходовой преобразователь постоянного напряжения.
- •Импульсный преобразователь с несколькими выходами.
- •1.2. Двухтактные преобразователи постоянного напряжения в постоянное напряжение с трансформаторной связью нагрузки и питающей сети
- •1.3. Однотактный преобразователь постоянного напряжения I рода
- •1.4. Статический расчет замкнутой системы оппн I
- •1.5. Пример расчета оппн I, работающего в режиме стабилизации выходного напряжения
- •Расчет загрузки элементов схемы и их выбор
- •При этом обязательно надо учитывать возможность выбранного
- •Расчет потерь мощности и кпд [1]
- •1.6. Оценка динамических показателей разомкнутой системы оппнi при скачкообразном изменении нагрузки
- •1.7. Модификации оппн I с промежуточным отводом у обмотки дросселя
- •Тогда пульсации напряжения «от пика до пика»
- •1.8. Характеристики регулятора оппн II
- •1.9. Пример расчета оппн II, работающего в режиме стабилизации выходного напряжения
- •Расчет потерь мощности и кпд преобразователя
- •1.10. Модификации оппн II с промежуточным отводом у обмотки дросселя
- •Импульсные преобразователи постоянного напряжения в постоянное напряжение с трансформаторной связью между нагрузкой и питающей сетью
- •2.1. Двухтактные преобразователи постоянного напряжения в постоянное напряжение
- •2.2. Методика расчета двухтактного преобразователя, выполенного по полумостовой схеме
- •2.3. Методика расчета двухтактного полномостового преобразователя
- •Исходные данные:
- •Расчет промежуточного высокочастотного трансформатора
- •Расчет параметров сглаживающего фильтра
- •3. Прямоходовые и обратноходовые однотактные преобразователи
- •3.1. Однотактный обратноходовой преобразователь
- •3.2. Однотактный прямоходовой преобразователь
- •3.3. Реальные процессы в простейшем ооп
- •3.4. Выбор силового транзистора ооп по напряжению и току
- •3.5. Однотактный преобразователь, выполненный по схеме косого полумоста
- •4. Методика расчета трансформаторов для импульсных преобразователей постоянного напряжения в постоянное напряжение, выполненных по схеме опп
- •4.1. Определение расчетного значения величины магнитной индукции сердечника трансформатора
- •4.2. Вывод расчетных соотношений для определения произведения площадей сердечника магнитопровода Sc и окна Sок
- •4.3. Учет электрических потерь, вызванных поверхностным эффектом
- •4.4. Расчет действующего (среднеквадратичного) значения токов цепей импульсных преобразователей
- •4.5. Конструкция сердечника магнитопровода трансформатора однотактных преобразователей
- •4.6. Типовая серия ферритовых сердечников формы е
- •4.7. Расчет потерь в ферритовом сердечнике магнитопровода трансформатора
- •5. Методика расчета опп
- •5.1. Расчет трансформатора
- •5.2. Расчет параметров сглаживающего фильтра
- •5.3. Выбор транзистора
- •5.4. Выбор диодов vd1 и vd2
- •5.5. Расчет потерь мощности и коэффициента полезного действия опп
- •5.6. Расчет площади радиатора транзистора
- •5.7. Статический расчет замкнутой по напряжению системы
- •6. Однотактный обратноходовой преобразователь
- •6.1. Методика расчета трансформатора обратного хода
- •6.1.1.Определение рабочего диапазона изменения индукции сердечника магнитопровода трансформатора
- •6.1.2.Определение размера сердечника магнитопровода
- •Среднее значение тока первичной обмотки
- •6.1.4. Вычисление немагнитного зазора
- •6.2. Пример расчета однотактного обратноходового преобразователя
- •6.2.1. Расчет трансформатора
- •6.2.2. Выбор транзистора vt1
- •6.2.3. Расчет емкости сглаживающего фильтра
- •6.2.4. Выбор диода
- •6.2.5. Расчет потерь мощности и коэффициента полезного действия ооп
- •6.2.6. Расчет площади радиатора транзистора
- •6.3. Схема управления
- •6.4. Статический расчет замкнутой по напряжению системы
- •6.5. Проверка преобразователя на устойчивость к возмущающим воздействиям
- •6.6. Методика расчета входного фильтра
- •7. Защита преобразователя от сверхтоков и перенапряжений
- •7.1. Защита преобразователя от сверхтока
- •7.2. Защита цепей преобразователя от электромагнитных импульсов (перенапряжений)
- •8. Справочные данные по элементной базе для импульсных преобразователей
- •8.1. Источники питания драйверов
- •8.2. Драйверы m57957l и m57958l
- •8.3. Драйверы фирмы International Rectifier
- •8.4. Справочные данные по диодам
- •8.5. Справочные данные по стабилитронам кремниевым средней мощности
- •8.6. Справочные данные по транзисторам
- •8.7. Справочные данные по отечественным тиристорам
- •8.8. Справочные данные по конденсаторам
- •8.9. Справочные данные по дросселям
- •8.10. Характеристики медных проводов для обмоток трансформаторов и высокоомных манганиновых проводов для электрических шунтов
Прямоходовой преобразователь постоянного напряжения.
Другая популярная схема импульсного преобразователя известна как схема прямоходового преобразователя и показана на рис. 5. Хотя эта схема очень напоминает обратноходовую схему, имеются и некоторые фундаментальные различия [4]. Обычно на выходе ОПП устанавливают L-C сглаживающий фильтр, поэтому в прямоходовом преобразователе энергия накапливается не в трансформаторе, а в индуктивности дросселя сглаживающего фильтра. Точки, обозначающие начало обмоток на трансформаторе, показывают, что электрическая энергия от источника питания передается в нагрузку на интервале открытого состояния транзистора. При этом на вторичной обмотке трансформатора наводится напряжение, под воздействием которого через диод VD1 и дроссель течет ток нагрузки.
Рис. 5. Схема прямоходового преобразователя постоянного напряжения при питании от сети переменного тока
У этой схемы, как правило, большая продолжительность включенного состояния транзистора относительно выключенного состояния, более высокое среднее значение напряжения во вторичной обмотке и более высокий выходной ток (ток нагрузки).
Когда транзистор VT закрывается, ток в обмотке дросселя не может измениться мгновенно и под воздействием ЭДС самоиндукции дросселя продолжает течь через нагрузку и диод VD2. Таким образом, в отличие от обратноходовой схемы, ток от элемента, сохраняющего энергию (Lф), течет во время обоих интервалов цикла переключения транзистора VT . Поэтому прямоходовой преобразователь постоянного напряжения имеет более низкий уровень пульсаций выходного напряжения, чем обратноходовая схема при тех же самых выходных параметрах, что бесспорно является достоинством схемы ОПП по сравнению со схемой ООП.
Импульсный преобразователь с несколькими выходами.
Большинство импульсных источников питания имеют больше одного выхода. Например, для источников питания цифровых схем в дополнение к выходному напряжению +5 В могут иметься выходы на напряжения +12, -12, +24 и -5 В [4]. Эти выходы используются в системах для питания всевозможных устройств типа формирователей сигналов для гибких и жестких дисков, принтеров, видеотерминалов, интерфейсов типа RS-232 и различных аналоговых схем. На рис. 6 показан обратноходовой преобразователь с несколькими выходами. Напряжение обратной связи снимается с выхода +5 В и подается в широтно-импульсный модулятор (ШИМ), таким образом, стабилизируя всю схему. Это означает, что вспомогательные выходы не стабилизируются в той же мере, как главный выход +5 В. Для некоторых нагрузок, например для двигателя дисковода, это не важно. Для других нагрузок, более критичных к уровню стабилизации напряжения, на вспомогательные выходы устанавливают линейные стабилизаторы, чтобы обеспечить требуемый уровень стабилизации напряжения данного канала, как это показано на рис. 6. Стандартные импульсные источники питания могут иметь до пяти различных выходов.
Рис. 6. Схема обратноходового преобразователя с несколькими выводами
Вопросы для самоконтроля
1. В чем заключаются основные различия между ООП и ОПП?
2. В чем заключается различие между ОППН I и ОППН II?