- •2. Методы исследования
- •3. Жидкость как объект изучения гидравлики
- •Гипотеза сплошности
- •Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Растворение газов
- •Кипение
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Силы, действующие в жидкости Массовые силы; Поверхностные силы; Силы
- •Силы, действующие в жидкости
- •1.1 Массовые силы
- •1.2 Поверхностные силы
- •1.2.1 Силы поверхностного натяжения
- •Силы давления; Свойства гидростатического давления. Основное уравнение
- •Силы давления
- •1.3.1Свойства гидростатического давления
- •2. Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •3. Приборы для измерения давления
- •Скорость распространения гидравлической ударной волны в трубопроводе
- •Ударное давление; Протекание гидравлического удара во времени. Частные случаи интегрирования уравнений Эйлера; Ударное давление
- •Протекание гидравлического удара во времени
- •Покой жидкости под действием силы тяжести; Физический смысл основного закона гидростатики поверхности равных давлений
- •Физический смысл основного закона гидростатики
- •Прямолинейное равноускоренное движение сосуда с жидкостью; Покой при
- •Покой при равномерном вращении сосуда с жидкостью
- •Классификация гидравлических машин; классификация насосов по конструкции и назначению
- •Водокольцевые вакуум-насосы, вихревые насосы, эрлифты.
- •Сила давления жидкости на плоскую стенку; Центр давления; Сила давления
- •Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Круглая труба под действием гидростатического давления. Гидростатический
- •Гидростатический парадокс
- •О сновы теории плавания тел
- •Основное уравнение центробежных насосов (уравнение Эйлера), допустимая
- •Виды движения (течения) жидкости, Типы потоков жидкости; Гидравлические характеристики потока жидкости. Виды движения (течения) жидкости
- •Типы потоков жидкости
- •Гидравлические характеристики потока жидкости
- •Геометрической высотой нагнетания
- •15.Мощность и коэффициент полезного действия насоса
- •Рабочая характеристика центробежного насоса (б)
- •Гидравлическими потерями и их определение
- •Основы теории подобия, геометрическое и динамическое подобие; Основы теории подобия, геометрическое и динамическое подобие
- •Критерии подобия для потоков несжимаемой жидкости Критерии подобия для потоков несжимаемой жидкости Критерий подобия Ньютона
- •Критерий подобия Эйлера
- •Критерий подобия Рейнольдса
- •Критерий подобия Фруда
- •Заключение о подобии напорных потоков
- •19) Критерий подобия Ньютона; Критерий подобия Эйлера. См.№18
- •20. Струйная модель потока; Уравнения неразрывности Струйная модель потока
- •21. Уравнение Бернулли для струйки идеальной жидкости; Уравнение Бернулли для струйки идеальной жидкости
- •22. Геометрическая интерпретация уравнения Бернулли ; Геометрическая интерпретация уравнения Бернулли
- •23. Энергетическая интерпретация уравнения Бернулли
- •24. Уравнение Бернулли для потока идеальной жидкости; Уравнение Бернулли для
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •25. Два режима течения жидкости; Физический смысл числа Рейнольдса; Основные
- •Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Основные особенности турбулентного режима движения
- •26. Возникновение турбулентного течения жидкости; Возникновение ламинарного
- •Возникновение ламинарного режима
- •27. Основные сведения о гидроприводе. Принцип действия и характеристики
- •1. Основные сведения о гидроприводе
- •2. Принцип действия и характеристики
- •28. Сопротивление потоку жидкости; Гидравлические потери по длине Ламинарное
- •Ламинарное течение жидкости
- •29. Параллельное соединение трубопроводов; Разветвлённые трубопроводы; Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •30. Турбулентное течение в гладких трубах; Турбулентное течение в шероховатых трубах; Турбулентное течение в гладких трубах
- •31. Выводы из графиков Никурадзе. Простые трубопроводы постоянного сечения;
- •Выводы из графиков Никурадзе
- •Простые трубопроводы постоянного сечения гидросистем
- •Последовательное соединение трубопроводов
- •32. Виды местных сопротивлений; Постепенное расширение потока; Постепенное
- •Виды местных сопротивлений Внезапное расширение.
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
Гипотеза сплошности
Рассматривать и математически описывать жидкость как совокупность огромного количества отдельных частиц, находящихся в постоянном непрогнозируемом движении, на современном уровне науки не представляется возможным. По этой причине жидкость рассматривается как некая сплошная деформируемая среда, имеющая возможность непрерывно заполнять пространство, в котором она заключена. Другими словами, под жидкостями понимают все тела, для которых характерно свойство текучести, основанное на явлении диффузии. Текучестью можно назвать способность тела как угодно сильно менять свой объём под действием сколь угодно малых сил. Таким образом, в гидравлике жидкость понимают как абстрактную среду – континуум, который является основой гипотезы сплошности. Континуум считается непрерывной средой без пустот и промежутков, свойства которой одинаковы во всех направлениях. Это означает, что все характеристики жидкости являются непрерывными функциями и все частные производные по всем переменным также непрерывны.
По-другому такие тела (среды) называют капельными жидкостями. Капельные жидкости - это такие, которые в малых количествах стремятся принять шарообразную форму, а в больших образуют свободную поверхность.
Очень часто в математических описаниях гидравлических закономерностей используются понятия «частица жидкости» или «элементарный объём жидкости». К ним можно относиться как к бесконечно малому объёму, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3∙1013 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся или покоящейся жидкостью.
Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости. Правомерность применения такой модели жидкости подтверждена всей практикой гидравлики.
Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонентов, которые могут образовывать с жидкостью различные смеси как гомогенные (растворы) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам.
Идеальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств и, кроме того, характеризуется абсолютной несжимаемостью, абсолютной текучестью (отсутствие сил внутреннего трения), отсутствием процессов теплопроводности и теплопереноса.
Реальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств, но в отличие от идеальной модели, обладает внутренним трением при движении.
Идеальный газ - модель, характеризующаяся изотропностью всех физических свойств и абсолютной сжимаемостью.
Реальный газ - модель, при которой на сжимаемость газа при условиях близких к нормальным условиям существенно влияют силы взаимодействия между молекулами.
Основные свойства жидкости
