- •Тканевой метаболизм глюкозы.
- •Анаэробный распад
- •Аэробный распад глюкозы
- •Аэробный непрямой распад глюкозы
- •Основные этапы аэробного непрямого распада глюкозы:
- •Выход атф при аэробном распаде глюкозы.
- •Аэробный прямой распад глюкозы
- •Функции пфп
- •Глюконеогенез
- •Обходной путь пируваткиназной реакции Превращение пирувата в фосфоенолпируват
- •Обходной путь фосфофруктокиназной реакции
- •Обходной путь гексокиназной реакции
- •Биологическая роль глюконеогенеза.
- •Гликогенолиз (распад гликогена)
- •Обмен липидов
- •Переваривание и всасывание липидов.
- •Специфичность действия фосфолипаз: х – азотистое основание; стрелки указывают гидролизуемую связь
- •Всасывание продуктов гидролиза липидов
- •Желчные кислоты
- •Промежуточный метаболизм липидов в клетках Метаболизм глицерина
- •Окисление жирных кислот
- •Активация жирных кислот
- •Транспорт жирных кислот внутрь митохондрий.
- •Основные положения - окисления жирных кислот:
- •Энергетика - окисления
- •Биосинтез липидов. Биосинтез жирных кислот.
- •Биосинтез триацилглицеридов
- •Обмен белков Переваривание и всасывание белков.
- •Всасывание продуктов распада белков.
- •Пути использования аминокислот в организме
- •Промежуточный обмен аминокислот в тканях.
- •Гидролитическое дезаминирование:
- •Внутримолекулярное дезаминирование:
- •Окислительное дезаминирование
- •Трансаминирование
- •Непрямое дезаминирование
- •Декарбоксилирование аминокислот
- •Конечные продукты распада аминокислот. Обезвреживание аммиака в организме.
- •Пути обезвреживания аммиака в организме.
- •Восстановительное аминирование.
- •Образование аммонийных солей.
- •Обмен хромопротеинов
- •Биосинтез гемоглобина
- •Распад гемоглобина в тканях (образование желчных пигментов)
Обмен белков Переваривание и всасывание белков.
Белки – обязательный компонент сбалансированного пищевого рациона.
Главными источниками белков для организма являются пищевые продукты растительного и животного происхождения. Переваривание белков в организме происходит с участием протеолитических ферментов желудочно-кишечного тракта. Протеолиз – гидролиз белков. Протеолитические ферменты – ферменты, осуществляющие гидролиз белков. Данные ферменты подразделяются на две группы – экзопепетидазы, катализирующие разрыв концевой пептидной связи с освобождением одной какой-либо концевой аминокислоты, и эндопептидазы, катализирующие гидролиз пептидных связей внутри полипептидной цепи.
В ротовой полости расщепления белков не происходит из-за отсутствия протеолитических ферментов. В желудке имеются все условия для переваривания белков. Протеолитические ферменты желудка – пепсин, гастриксин – проявляют максимальную каталитическую активность в сильно кислой среде. Кислая среда создается желудочным соком (рН = 1,0–1,5), который вырабатывается обкладочными клетками слизистой оболочки желудка и в качестве основного компонента содержит соляную кислоту. Под действием соляной кислоты желудочного сока происходит частичная денатурация белка, набухание белков, что приводит к распаду его третичной структуры. Кроме того, соляная кислота переводит неактивный профермент пепсиноген (вырабатывается в главных клетках слизистой оболочки желудка) в активный пепсин. Пепсин катализирует гидролиз пептидных связей, образованных остатками ароматических и дикарбоновых аминокислот (оптимум рН = 1,5–2,5). Слабее проявляется протеолитическое действие пепсина на белки соединительной ткани (коллаген, эластин). Не расщепляются пепсином протамины, гистоны, мукопротеины и кератины (белки шерсти и волос).
По мере переваривания белковой пищи с образованием продуктов гидролиза щелочного характера рН желудочного сока изменяется до 4,0. С уменьшением кислотности желудочного сока проявляется деятельность другого протеолитического фермента – гастриксина (оптимум рН= 3,5–4,5).
В желудочном соке детей обнаружен химозин (реннин), расщепляющий казеиноген молока.
Дальнейшее переваривание полипептидов (образовавшихся в желудке) и нерасщепившихся белков пищи осуществляется в тонком кишечнике под действием ферментов панкреатического и кишечного соков. Протеолитические ферменты кишечника – трипсин, химотрипсин – поступают с панкреатическим соком. Оба фермента наиболее активны в слабощелочной среде (7,8–8,2), что соответствует рН тонкого кишечника. Профермент трипсина – трипсиноген, активатор – энтерокиназа (вырабатывается стенками кишечника) или ранее образованный трипсин. Трипсин гидролизует пептидные связи, образованные арг и лиз. Профермент химотрипсина – химотрипсиноген, активатор – трипсин. Химотрипсин расщепляет пептидные связи между ароматическими амк, а также связи, которые не были гидролизованы трипсином.
Благодаря гидролитическому действию на белки эндопептидаз (пепсин, трипсин, химотрипсин) образуются пептиды различной длины и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов – экзопептидаз. Одни из них – карбоксипептидазы – синтезируются в поджелудочной железе в виде прокарбоксипептидазы, активируются трипсином в кишечнике, отщепляют аминокислоты с С-конца пептида; другие – аминопептидазы – синтезируются в клетках слизистой оболочки кишечника, активируются трипсином, отщепляют аминокислоты с N – конца.
Оставшиеся низкомолекулярные пептиды (2–4 аминокислотных остатка) расщепляются тетра-, три- и дипептидазами в клетках слизистой оболочки кишечника.
