- •Тканевой метаболизм глюкозы.
- •Анаэробный распад
- •Аэробный распад глюкозы
- •Аэробный непрямой распад глюкозы
- •Основные этапы аэробного непрямого распада глюкозы:
- •Выход атф при аэробном распаде глюкозы.
- •Аэробный прямой распад глюкозы
- •Функции пфп
- •Глюконеогенез
- •Обходной путь пируваткиназной реакции Превращение пирувата в фосфоенолпируват
- •Обходной путь фосфофруктокиназной реакции
- •Обходной путь гексокиназной реакции
- •Биологическая роль глюконеогенеза.
- •Гликогенолиз (распад гликогена)
- •Обмен липидов
- •Переваривание и всасывание липидов.
- •Специфичность действия фосфолипаз: х – азотистое основание; стрелки указывают гидролизуемую связь
- •Всасывание продуктов гидролиза липидов
- •Желчные кислоты
- •Промежуточный метаболизм липидов в клетках Метаболизм глицерина
- •Окисление жирных кислот
- •Активация жирных кислот
- •Транспорт жирных кислот внутрь митохондрий.
- •Основные положения - окисления жирных кислот:
- •Энергетика - окисления
- •Биосинтез липидов. Биосинтез жирных кислот.
- •Биосинтез триацилглицеридов
- •Обмен белков Переваривание и всасывание белков.
- •Всасывание продуктов распада белков.
- •Пути использования аминокислот в организме
- •Промежуточный обмен аминокислот в тканях.
- •Гидролитическое дезаминирование:
- •Внутримолекулярное дезаминирование:
- •Окислительное дезаминирование
- •Трансаминирование
- •Непрямое дезаминирование
- •Декарбоксилирование аминокислот
- •Конечные продукты распада аминокислот. Обезвреживание аммиака в организме.
- •Пути обезвреживания аммиака в организме.
- •Восстановительное аминирование.
- •Образование аммонийных солей.
- •Обмен хромопротеинов
- •Биосинтез гемоглобина
- •Распад гемоглобина в тканях (образование желчных пигментов)
Непрямое дезаминирование
Образующаяся в ходе трансаминирования глутаминовая кислота способна к непосредственному дезаминированию, т.е. к отщеплению азота в виде аммиака с образованием -кетоглутаровой кислоты.
Непрямое дезаминирование происходит в два этапа:
1. Трансаминирование – аминокислота передает аминогруппу -КГ и при этом превращается в кетоформу, а -КГ – в глутаминовую:
2. Окислительное дезаминирование ГЛУ с выделением аммиака.
-КГ может вновь вступать в реакции трансаминирования с другой аминокислотой, затем дезаминироваться. Поскольку обе реакции (трансаминирование и дезаминирование глутаминовой кислоты) являются обратимыми, создаются условия для синтеза любой заменимой аминокислоты, если в организме имеются соответствующие -кетокислоты. Организм человека и животных не наделен способностью синтеза незаменимых аминокислот, из-за отсутствия соответствующих -кетокислот.
После дезаминирования углеродный скелет аминокислоты либо окисляется в аэробных условиях и служит источником энергии, либо используется в биосинтезе соединений.
Декарбоксилирование аминокислот
Декарбоксилирование – процесс отщепления карбоксильной группы аминокислот в виде СО2.
Несмотря на ограниченный круг аминокислот, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции – биогенные амины (гистамин, -аминомасляная кислота, серотонин и др.) оказывают сильное фармакологическое действие на физиологические функции организма. Например, гистамин оказывает сосудорасширяющее действие, -аминомасляная кислота оказывает тормозящее действие на ЦНС.
В живых организмах открыты 4 типа декарбоксилирования аминокислот. Для тканей животных характерно -декарбоксилирование, при котором от аминокислот отщепляется карбоксильная группа, расположенная по соседству с -углеродным атомом:
Продуктами реакции являются СО2 и биогенные амины.
Реакции декарбоксилирования в отличие от других процессов промежуточного обмена аминокислот являются необратимыми. Они катализируются специфическими ферментами – декарбоксилазами аминокислот, простетическая группа которых представлена пиридоксальфосфатом, как и у аминотрансфераз. Таким образом, в двух совершенно различных процессах обмена участвует один и тот же кофермент.
Несмотря на ограниченный круг аминокислот, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции – биогенные амины (гистамин, -аминомасляная кислота и др.) оказывают сильное фармакологическое действие на физиологические функции организма.
Гистамин образуется при декарбоксилировании гистидина, оказывает широкий спектр биологического действия: вызывает расширение капилляров (обладает сосудорасширяющим действием в отличие от других биогенных аминов), повышение их проницаемости (жидкость из крови выходит в межклеточную среду, что приводит к уменьшению объема крови), понижает АД, стимулирует секруцию желудочного сока и слюны, усиливает секрецию соляной кислоты в желудке; сокращает гладкие мышцы легких, что может вызвать «гистаминовый шок», что проявляется как приступ удушья; участвует в развитии болевых ощущений.
Большое количество гистамина образуется в очаге воспаления, что имеет определенный биологический смысл, вызывая расширение сосудов в очаге воспаления, гистамин тем самым ускоряет приток лейкоцитов, способствуя активации защитных сил организма. При повышенной чувствительности к гистамину в клинике используют антигистаминные препараты (санорин, димедрол и др.), оказывая влияние на рецепторы сосудов.
-аминомасляная кислота (ГАМК) образуется при декарбоксилировании глутаминовой кислоты, оказывает тормозящее действие на ЦНС (нейрогуморальный ингибитор). Обнаружена в сером веществе головного мозга, ее введение в организм вызывает торможение в коре (центральное торможение).
Серотонин образуется из триптофана в нейронах гипоталамуса, функционирует как нейромедиатор в ЦНС, оказывает мощное сосудосуживающее действие, регулирует АД, температуру тела, дыхание, почечную фильтрацию.
Этаноламин образуется при декарбоксилировании серина. Используется для синтеза холина, ацетилхолина, фосфолипидов (фосфатидилэтаноламина, фосфатидилхолина).
Дофамин образуется из тирозина в почках, надпочечниках, синаптических ганглиях и нервах, является нейромедиатором ингибирующего типа. В других клетках является предшественником других катехоламинов (адреналина и норадреналина).
Норадреналин образуется в результате гидроксилирования дофамина в клетках нервной ткани, мозговом веществе надпочечников. Функционирует как медиатор.
Адреналин − продукт метилирования норадреналина в клетках мозгового вещества надпочечников. Является гормоном.
Накопление биогенных аминов может отрицательно сказываться на физиологическом статусе организма. Инактивация биогенных аминов происходит путем их дезаминирования и окисления под действием ФАД-зависимой моноаминооксидазы (МАО) в митохондриях и диаминооксидазы (ДАО) в цитозоле.
Изменение концентрации биогенных аминов является причиной ряда патологических состояний. Например, при болезни Паркинсона наблюдается уменьшение количества дофамина и одним из способов лечения является снижение скорости инактивации дофамина под влиянием веществ − ингибиторов МАО.
