
- •Содержание
- •Организационно-методический раздел Цели и задачи дисциплины:
- •1. Пояснительная записка
- •1.1. Цель преподавания дисциплины
- •1.2 Задачи изучения дисциплины
- •1.3. Перечень дисциплин с указанием разделов (тем), усвоение которых студентами необходимо для изучения дисциплины
- •2. Содержание учебного материала
- •2.1. Наименование тем, их содержание, объем в часах лекционных занятий
- •2.2. Практические и семинарские занятия, их содержание и объем в часах
- •2.4. Курсовая работа, ее характеристика
- •Теоретический раздел электронного учебно-методического комплекса «Экологический мониторинг, контроль и экспертиза» экологический мониторинг
- •2. Классификация мониторинга. Характеристика основных систем и подсистем мониторинга
- •Национальная система мониторинга окружающей среды (нсмос) Республики Беларусь
- •Тема: принципы и методы экологического нормирования Вопросы
- •Оценка реального качества среды и определение требований к нему, исходя из категории, к которой относится конкретная экосистема (заповедная, урбанизированная и др.);
- •Определение степени устойчивости и экологического резерва системы;
- •Выработка нормативов допустимых воздействий и нагрузок на систему.
- •2. Основные нормативные требования к природным средам
- •2. Использование для рыбохозяйственных целей:
- •3. Экологическая стандартизация в Беларуси
- •Математическое моделирование как средство выработки допустимой экологической нагрузки
- •5. Оценка риска
- •Практический раздел электронного учебно-методического комплекса «заповедное дело» Практические занятия
- •Практические работы Практическая работа №1 Расчет выбросов загрязняющих веществ механическими транспортными средствами
- •1. Общие сведения
- •1.1 Термины и определения
- •1.2 Классификация веществ
- •1.3 Классификация механических транспортных средств
- •2. Методика расчета
- •2.1 Определение параметров дорожного движения
- •2.2 Расчет выбросов загрязняющих веществ и парниковых газов
- •3. Порядок оформления практической работы
- •4. Контрольные вопросы к практической работе
- •5. Варианты заданий к практической работе (табл.1.6)
- •Практическая работа №2 Расчет загрязнения атмосферы выбросами одиночного источника
- •1. Общие сведения
- •3. Порядок оформления практической работы
- •4. Контрольные вопросы к практической работе
- •5. Варианты заданий к практической работе (таблица 2.3)
- •Практическая работа №3 Расчет приземных концентраций загрязняющих веществ разных периодов осреднения
- •1. Общие сведения
- •2. Расчет разовых приземных концентраций по методу Гаусса
- •3. Пример расчета приземных концентраций загрязняющих веществ
- •4. Порядок оформления практической работы
- •5. Контрольные вопросы к практической работе
- •6. Варианты заданий к практической работе (таблица 3.7)
- •Практическая работа №4 Качественный и количественный анализ содержания тяжелых металлов в промышленных стоках
- •1.Общие сведения
- •1.1 Устройство и принцип работы Спектроскана»
- •1.2 Порядок подготовки проб и изготовления контрольных образцов
- •2. Порядок анализа спектрограмм
- •3. Пример расшифровки спектрограммы
- •4. Порядок оформления практической работы
- •5. Контрольные работы к практической работе
- •6. Варианты заданий к практической работе (таблица 4.4)
- •Практическая работа №5 Определение категории опасности предприятия
- •1.Общие сведения
- •2. Методика расчета
- •3. Вид записи результатов
- •4. Порядок оформления практической работы
- •5. Контрольные вопросы к практической работе
- •Практическая работа №6 Расчеты выбросов загрязняющих веществ в атмосферу при не контролируемом горении нефти и нефтепродуктов
- •1.Общие сведения
- •2.Методика расчета
- •3. Порядок оформления практической работы
- •4. Контрольные вопросы к практической работе
- •5. Варианты заданий к практической работе
- •2. Пример расчета
- •3. Порядок оформления практической работы
- •4. Контрольные вопросы к практической работе
- •5. Варианты заданий к практической работе
- •Практическая работа №8 Расчет экологического налога за размещение отходов производства
- •1.Общие сведения
- •2.Методика расчета
- •3. Порядок оформления практической работы
- •4. Контрольные вопросы к практической работе
- •5. Варианты заданий к практической работе
- •Практическая работа №9 Испытание оборудования на герметичность
- •1. Методика расчета
- •2.Пример расчета
- •3. Порядок оформления практической работы
- •4. Контрольные вопросы к практической работе
- •5. Варианты заданий к практической работе
- •Блок контроля знаний электронного учебно-методического комплекса «Экологический мониторинг, контроль и экспертиза» Тесты по дисциплине «Экологический мониторинг, контроль и экспертиза»
- •Вопросы к экзамену
- •Материально-техническое обеспечение дисциплины
Практическая работа №4 Качественный и количественный анализ содержания тяжелых металлов в промышленных стоках
Цель работы: изучение спектральных методов анализа, знакомство с устройством и принципом работы спектрометра «Спектроскан». Изучить методику определения состава и количества тяжелых металлов в промышленных сточных водах.
1.Общие сведения
Спектральные методы анализа являются наиболее распространенными способами исследования качественного и количественного состава загрязненной воды.
Под качественным анализом понимается определение видов загрязнителей тяжелых металлов в промышленных стоках. Количественный анализ заключается в определении концентраций видов загрязнителей.
Инфракрасная и ультрафиолетовая спектроскопии, рентгенофлуоресцентная спектроскопия, лазерные методы и другие позволяют определить множество микропримесей в воде. Эти методы основаны на избирательном поглощении излучений конкретной длины волны определенными атомами и молекулами или возбуждении атомов с целью получения их характеристики излучений.
К числу наиболее чувствительных методов определения примесей относится люминесцентный, который основан на возбуждении атомов контролируемых растворов с помощью рентгеновского или лазерного облучения и измерений длины волны, излучаемой возбужденными компонентами.
В данной работе используется спектрометр рентгеновский сканирующий кристалл-дифракционный портативный "Спектроскан". Он является автоматизированным аппаратом и предназначен для измерения в образце концентрации химических элементов от кальция до урана.
1.1 Устройство и принцип работы Спектроскана»
Работа спектрометра осуществляется с помощью последовательного выделения линий характеристического рентгеновского флуоресцентного излучения исследуемого образца, облучаемого остро фокусной маломощной рентгеновской трубкой, определения интенсивности этих линий и дальнейшего пересчета интенсивности в концентрацию элементов им соответствующих.
На рисунке 4.1 схематично изображены: 1 - рентгеновская трубка, 2 - исследуемый образец, 3 - кристаллоанализатор, 4 - детектор излучения; 5 - входная щель детектора; 6 - индикаторное табло. Принцип работы спектрометра. Выделенное излучение кристалл-анализатор 3 фокусирует в приемную щель 5, детектора 4, сигнал с которого после пересчетного устройства поступает на индикаторное табло 6 в виде потока импульсов за установленное время экспозиции (в виде спектрограммы - графика зависимости интенсивности излучения т.е. силы сигнала, от длины волны). Полученная величина пиков пропорциональна концентрации соответствующего химического элемента в образце.
Маломощная рентгеновская остро фокусная трубка облучает исследуемую зону образца (диаметр зоны около 10 мм). Возбужденное этим излучением характеристическое флуоресцентное излучение образца попадает на фокусирующий кристалл-анализатор, который в зависимости от угла падения излучения последовательно выделяет характеристические линии элементов (входящих в состав образца) согласно формуле Вульфа-Брегга:
(4.1)
где: - длина волны падающего излучения от n - го флуоресцирующего элемента;
n -порядок отражения кристалла (n = 1,2...);
2d -постоянная кристаллической решетки кристалл-анализатора;
Q - угол падения излучения на кристалл.
Рисунок
4.1 Рентген-оптическая схема спектроскана
(условная)
Кинематическая
схема спектрометра обеспечивает плавное
и синхронное перемещение кристалл-анализатора
и детектора таким образом, что при
повороте кристалла на угол
,
детектор поворачивается на угол
.
При этом каждому положению кристалла
и детектора соответствует по формуле
(4.1) определенная выделяемая длина волны.
Полному диапазону углов
,
отрабатываемых механизмов спектрометра,
соответствует (с учетом возможности
работать во втором порядке отражения)
диапазон выделяемых элементов от Ca до
U без исключения.