
- •1. Становление специальной теории относительности.
- •2.Преобразования Лоренца
- •3. Специальная теория относительности а.Эйнштейна
- •1. Принцип относительности: все законы природы одинаковы во всех инерциальных системах отсчета.
- •2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах отсчета и не зависит от движения источников и приемников света.
- •4. Элементы общей теории относительности
- •5. Экспериментальное подтверждение сто и ото
- •6. Основные представления о структуре вещества
- •7. Многоэлектронный атом. Принцип Паули. Квантово-механическое обоснование Периодического закона д.И.Менделеева.
- •8. Ядерные реакции. Связь энергии и массы. Дефект масс.
- •9. Элементарные частицы
- •10. Стандартная модель. Вещество и поле.
- •11. Физический вакуум
- •12. Развитие представлений о вселенной
- •13. Вселенная. Основные этапы её эволюции.
- •14. Темная материя и темная энергия
- •15. Звезды.
- •16. Происхождение Солнечной системы и Земли
- •17. Происхождение Луны.
- •18. Земля
- •19. Целесообразность во Вселенной (принципы построения Вселенной)
1. Становление специальной теории относительности.
На рубеже XIX-XX веков Дж.Томпсон высказал мнение о том, что здание физики практически построено, не хватает лишь нескольких деталей: на ясном небосклоне имеются только два облачка. Первое омрачающее общую умиротворяющую картину облачко Томсон связывал с отрицательным результатом опыта Майкельсона по измерению скорости эфира. Второе – неинвариантность уравнений Максвелла по отношению к преобразованиям Галилея. По прошествии века мы с уверенностью можем констатировать, что из этих, на первый взгляд, довольно-таки безобидных облачков не только выросла вся современная физика: первое облачко дало впоследствии жизнь теории относительности, а второе — квантовой механике.
Первым этапом в становлении специальной теории относительности стал опыт А.А.Майкельсона (1852-1931), проведенный в 1881 году. В опыте определялась скорость света в различных движущихся системах отсчета. По теории Максвелла электромагнитные волны должны распространяться со скоростью в вакууме - с. Встал вопрос, в какой инерциальной системе отсчета это происходит. Майкельсон экспериментально определял скорость света в разных системах отсчета. В соответствии с преобразованиями Галилея и положениями классической механики, скорости света в этих системах отсчета должны были бы отличатся на величину 2vз. Результаты эксперимента Майкельсона однозначно показали, что скорость света не зависит от выбора системы отсчета и всегда равна с.
К концу прошлого века Д.К.Максвеллом (1831-1879) были сформулированы основные законы электричества и магнетизма в виде системы дифференциальных уравнений, которые описывали постоянные и переменные электрические и магнитные поля. Из системы уравнений Максвелла следовало, что переменные электрические и магнитные поля могут существовать только в форме единого электромагнитного поля, которое распространяются в пространстве после возникновения с постоянной скоростью, равной скорости света в вакууме - с. На вопрос о том, в какой среде распространяется это поле, теория Максвелла ответа не давала. Ключевым моментом теории Максвелла являлось то, что уравнения Максвелла были не инвариантны относительно преобразований Галилея. Это обозначало, что преобразования Галилея нельзя было применять при описании электрических и магнитных явлений. Строгое математическое доказательство не инвариантности уравнений Максвелла относительно преобразований Галилея достаточно сложно. Поэтому, проиллюстрируем этот факт на простом и наглядном примере. Пусть два одноименных заряда летят с одинаковой скоростью в направлении оси (OX). В неподвижной системе отсчета заряды будут создавать электрические и магнитные поля, и, следовательно, будут находиться в полях друг друга. Электрическое поле воздействует на заряд силой Кулона, магнитное - силой Лоренца. Если перейти к системе отсчета, движущейся вдоль оси (ОХ), вместе с зарядами, то в ней заряды окажутся неподвижными, и сила Лоренца не возникнет. Таким образом, силы взаимодействия зарядов в различных инерциальных системах отсчета окажутся разными. Следовательно, и поведение частиц, их движение во времени, будет разным в зависимости от того, в какой инерциальной системе координат мы рассматриваем это движение. Естественно, что это абсурд и отсюда сделаем вывод, что к движущимся зарядам, законы движения и взаимодействия которых описываются уравнениями
Максвелла, нельзя применять принцип относительности Галилея.