
- •§ 1. Испытания и события
- •§ 2. Виды случайных событий
- •§ 3. Классическое определение вероятности
- •§ 4. Основные формулы комбинаторики
- •§ 5. Примеры непосредственного вычисления вероятностей
- •§ 6. Относительная частота. Устойчивость относительной частоты
- •§ 7. Ограниченность классического определения вероятности. Статистическая вероятность
- •§ 8. Геометрические вероятности
- •§ 1. Теорема сложения вероятностей несовместных событий
- •§ 2. Полная группа событий
- •§ 4. Принцип практической невозможности маловероятных событий *
- •§ 1. Произведение событий
- •§ 2. Условная вероятность
- •§ 3. Теорема умножения вероятностей
- •§ 4. Независимые события. Теорема умножения для независимых событий
- •§ 5. Вероятность появления хотя бы одного события
- •§ 1. Теорема сложения вероятностей совместных событий
- •§ 2. Формула полной вероятности
- •§ 3. Вероятность гипотез. Формулы Бейеса
- •§ 1. Формула Бернулли
- •§ 2. Локальная теорема Лапласа
- •§ 3. Интегральная теорема Лапласа
- •§ 4. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •§ 1. Случайная величина
- •§ 2. Дискретные и непрерывные случайные величины
- •§ 3. Закон распределения вероятностей дискретной случайной величины
- •§ 4. Биномиальное распределение
- •§ 5. Распределение Пуассона
- •§ 6. Простейший поток событий
- •§ 7. Геометрическое распределение
- •§ 8. Ги пер геометрическое распределение
- •§ 1. Числовые характеристики дискретных случайных величин
- •§ 2. Математическое ожидание дискретной случайной величины
- •§ 3. Вероятностный смысл математического ожидания
- •§ 4. Свойства математического ожидания
- •§ 5. Математическое ожидание числа появлг I события в независимых испытаниях
- •§ 1. Целесообразность введения числовой характеристики рассеяния случайной величины
- •§ 2. Отклонение случайной величины от ее математического ожидания
- •§ 3. Дисперсия дискретной случайной величины
- •§ 4. Формула для вычисления дисперсии
- •§ 5. Свойства дисперсии
- •§ 6. Дисперсия числа появлений события в независимых испытаниях
- •§ 7. Среднее квадратическое отклонение
- •§ 8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •§ 9. Одинаково распределенные взаимно независимые случайные величины
- •§ 10. Начальные и центральные теоретические моменты
- •§ 1. Предварительные замечания
- •§ 2. Неравенство Чебышева
- •§ 3. Теорема Чебышева
- •§ 4. Сущность теоремы Чебышева
- •§ 5. Значение теоремы Чебышева для практики
- •§ 6. Теорема Бернулли
- •§ 1. Определение функции распределения
- •§ 2. Свойства функции распределения
- •§ 3. График функции распределения
- •3. Дискретная случайная величина X задана законом распрс. Деления
- •§ 1. Определение плотности распределения
- •§ 2. Вероятность попадания непрерывной случайной величины в заданный интервал
- •§ 3. Нахождение функции распределения по известной плотности распределения
- •§ 4. Свойства плотности распределения
- •§ 5. Вероятностный смысл плотности распределения
- •§ 6. Закон равномерного распределения вероятностей
- •§ 1. Числовые характеристики непрерывных случайных величин
- •§ 2. Нормальное распределение
- •§ 3. Нормальная кривая
- •§ 4. Влияние параметров нормального распределения на форму нормальной кривой
- •§ 5. Вероятность попадания в заданный интервал нормальной случайной величины
- •§ 6. Вычисление вероятности заданного отклонения
- •§ 7. Правило трех сигм
- •§ 8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- •§ 9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
- •§10. Функция одного случайного аргумента и ее распределение
- •§ 11. Математическое ожидание функции одного случайного аргумента
- •§ 12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
- •§ 13. Распределение «хи квадрат»
- •§ 14. Распределение Стьюдента
- •§ 15. Распределение f Фишера — Снедекора
- •§ 1. Определение показательного распределения
- •§ 2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
- •§ 3. Числовые характеристики показательного распределения
- •§ 4. Функция надежности
- •§ 5. Показательный закон надежности
- •§ 6. Характеристическое свойство показательно,, закона надежности
- •§ 1. Понятие о системе нескольких случайных величин
- •§ 2. Закон распределения вероятностей дискретной двумерной случайной величины
- •§ 3. Функция распределения двумерной случайной величины
- •§ 4. Свойства функции распределения двумерной случайной величины
- •§ 5. Вероятность попадания случайной точки в полуполосу
- •§ 6. Вероятность попадания случайной точки в прямоугольник
- •§ 7F Плотность совместного распределения вероятностей непрерывной, двумерной случайной величины (двумерная плотность вероятности)
- •§ 8. Нахождение функции распределения системы по известной плотности распределения
- •§ 9. Вероятностный смысл двумерной плотности вероятности
- •§ 10. Вероятность попадания случайной точки в произвольную область
- •§11. Свойства двумерной плотности вероятности
- •§ 12. Отыскание плотностей вероятности составляющих двумерной случайной величины
- •§ 13. Условные законы распределения составляющих системы дискретных случайных величин
- •§ 14. Условные законы распределения составляющих системы непрерывных случайных величин
- •§ 15. Условное математическое ожидание
- •§ 16. Зависимые и независимые случайные величины
- •§ 17. Числовые характеристики системы двух случайных величин. Корреляционный момент. Коэффициент корреляции
- •§ 18. Коррелированность и зависимость случайных величин
- •§ 19. Нормальный закон распределения на плоскости
- •§ 20. Линейная регрессия. Прямые линии среднеквадратической регрессии
- •§ 21. Линейная корреляция. Нормальная корреляция
- •1. Найти законы распределения составляющих дискретной двумерной случайной величины, заданной законом распределения
- •§ 1. Задачи математической статистики
- •§ 2. Краткая историческая справка
- •§ 3. Генеральная и выборочная совокупности
- •§ 4. Повторная и бесповторная выборки. Репрезентативная выборка
- •§ 5. Способы отбора
- •§ 6. Статистическое распределение выборки
- •§ 7. Эмпирическая функция распределения
- •§ 8. Полигон и гистограмма
- •§ 1. Статистические оценки параметров распределения
- •§ 2. Несмещенные, эффективные и состоятельны оценки е
- •§ 3. Генеральная средняя
- •§ 4. Выборочная средняя
- •§ 5. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних
- •§ 7. Отклонение от общей средней и его свойств
- •§ 8. Генеральная дисперсия
- •§ 9. Выборочная дисперсия
- •§ 10. Формула для вычисления дисперсии
- •§11. Групповая, внутри групповая, межгрупповая и общая дисперсии
- •§ 12. Сложение дисперсий
- •§ 13. Оценка генеральной дисперсии по исправленной выборочной
- •§ 14. Точность оценки, доверительная вероятность (надежность). Доверительный интервал
- •§15. Доверительные интервалы для оценки математического ожидания нормального распределения при известном о
- •§ 16. Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном о
- •§ 17. Оценка истинного значения измеряемой величины
- •§ 18. Доверительные интервалы для оценки среднего квадратического отклонения а нормального распределения
- •§ 19. Оценка точности измерений
- •§ 20. Оценка вероятности (биномиального распределения) по относительной частоте
- •§ 21. Метод моментов для точечной оценки параметров распределения
- •§ 22. Метод наибольшего правдоподобия
- •§ 23. Другие характеристики вариационного ряда
- •§ 1. Условные варианты
- •§ 2. Обычные, начальные и центральные эмпирические моменты
- •§ 3. Условные эмпирические моменты. Отыскание центральных моментов по условным
- •§ 4. Метод произведений для вычисления выборочных средней и дисперсии
- •§ 5. Сведение первоначальных вариант к равноотстоящим
- •§ 6. Эмпирические и выравнивающие (теоретические) частоты
- •§ 7. Построение нормальной кривой по опытным данным
- •§ 8. Оценка отклонения эмпирического распределения от нормального. Асимметрия и эксцесс
- •§ 1. Функциональная, статистическая и корреляционная зависимости
- •§ 2. Условные средние
- •§ 3. Выборочные уравнения регрессии
- •§ 4. Отыскание параметров выборочного уравнения Прямой линии среднеквадратичной регрессии по несгруппированным данным
- •§ 5. Корреляционная таблица
- •§ 7. Выборочный коэффициент корреляции
- •§ 8. Методика вычисления выборочного коэффициента корреляции
- •§ 9. Пример на отыскание выборочного уравнения прямой линии регрессии
- •§ 10. Предварительные соображения к введению меры любой корреляционной связи
- •§ 11. Выборочное корреляционное отношение
- •§ 12. Свойства выборочного корреляционного отношения
- •§13. Корреляционное отношение как мера корреляционной связи. Достоинства и недостатки этой меры
- •§ 14. Простейшие случаи криволинейной корреляции
- •§ 15. Понятие о множественной корреляции
- •§ 1. Статистическая гипотеза. Нулевая
- •§ 2. Ошибки первого и второго рода
- •§ 3. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
- •§ 4. Критическая область. Область принятия гипотезы. Критические точки
- •§ 5. Отыскание правосторонней критической области
- •§ 6. Отыскание левосторонней и двусторонней критических областей
- •§ 7. Дополнительные сведения о выборе критической области. Мощность критерия
- •§ 8. Сравнение двух дисперсий нормальных генеральных совокупностей
- •§ 9. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности
- •§ 10. Сравнение двух средних нормальных
- •"Набл — ,...-. .....» . — 1 fV/o#
- •§ 12. Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых неизвестны и одинаковы (малые независимые выборки)
- •§ 13. Сравнение выборочной средней с гипотетической генеральной средней нормальной совокупности
- •§ 14. Связь между двусторонней критической областью и доверительным интервалом
- •§ 15. Определение минимального объема выборки при сравнении выборочной и гипотетической генеральной средних
- •§16. Пример на отыскание мощности критерия
- •§ 17. Сравнение двух средних нормальных генеральных совокупностей с неизвестными дисперсиями (зависимые выборки)
- •§ 18. Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •§ 19. Сравнение двух вероятностей биномиальных распределений
- •§ 20. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта
- •§ 21. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена
- •§ 22. Проверка гипотезы о значимости выборочного коэффициента корреляции
- •§ 24. Методика вычисления теоретических частот нормального распределения
- •§ 25. Выборочный коэффициент ранговой корреляции Спирмена и проверка гипотезы о его значимости
- •§ 26. Выборочный коэффициент ранговой корреляции Кендалла и проверка гипотезы о его значимости
- •§ 27. Критерий Вилкоксона и проверка гипотезы об однородности двух выборок
- •§ 1. Сравнение нескольких средних. Понятие о дисперсионном анализе
- •§ 2. Общая факторная и остаточная суммы квадратов отклонений
- •§ 3. Связь между общей, факторной и остаточной суммами
- •§ 4. Общая, факторная и остаточная дисперсии
- •§ 5. Сравнение нескольких средних методом дисперсионного анализа
- •§ 1. Предмет метода Монте — Карло
- •§ 2. Оценка погрешности метода Монте — Карло
- •§ 3. Случайные числа
- •§ 4. Разыгрывание дискретной случайной величины
- •§ 5. Разыгрывание противоположных событий
- •§ 6. Разыгрывание полной группы событий
- •§ 7. Разыгрывание непрерывной случайной величины. Метод обратных функций
- •§ 8. Метод суперпозиции
- •§ 9. Приближенное разыгрывание нормальной случайной величины
- •§ 1. Цепь Маркова
- •§ 2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода
- •§ 3. Равенство Маркова
- •§ 1. Основные задачи
- •§ 2, Определение случайной функции
- •§ 3. Корреляционная теория случайных функций
- •§ 4. Математическое ожидание случайной функции
- •§ 5. Свойства математического ожидания случайной функции
- •§ 6. Дисперсия случайной функции
- •§ 7. Свойства дисперсии случайной функции
- •§ 8. Целесообразность введения корреляционной функции
- •§ 9. Корреляционная функция случайной Функции
- •§11. Нормированная корреляционная функция
- •§ 12. Взаимная корреляционная функция
- •§ 13. Свойства взаимной корреляционной функции
- •§ 14. Нормированная взаимная корреляционная функция
- •§ 15. Характеристики суммы случайных функций
- •§ 16. Производная случайной функции и ее характеристики
- •§ 17. Интеграл от случайной функции и его характеристики
- •§ 18. Комплексные случайные величины и их числовые характеристики
- •§ 19. Комплексные случайные функции и их характеристики
- •§ 1. Определение стационарной случайной функции
- •§ 2. Свойства корреляционной функции стационарной случайной функции
- •§ 3. Нормированная корреляционная функция стационарной случайной функции
- •§ 4, Стационарно связанные случайные функции
- •§ 5. Корреляционная функция производной стационарной случайной функции
- •§ 6. Взаимная корреляционная функция стационарной случайной функции и ее производной
- •§ 7. Корреляционная функция интеграла от стационарной случайной функции
- •§ 8. Определение характеристик эргодическмх стационарных случайных функций из опыта
- •§ 1. Представление стационарной случайной функции в виде гармонических колебаний со случайными амплитудами и случайными фазами
- •§ 2. Дискретный спектр стационарной случайной функции
- •§ 3. Непрерывный спектр стационарной случайной функции. Спектральная плотность
- •§ 4. Нормированная спектральная плотность
- •§ 5. Взаимная спектральная плотность стационарных и стационарно связанных случайных функций
- •§ 7. Стационарный белый шум
- •§ 8. Преобразование стационарной случайной функции стационарной линейной динамической системой
- •1Истику,
- •1Сч счсчсмсчсчсчсчсм c4c4c4cococjco сосососососо сососососо сосоч-ч- ч1
- •Гмурман Владимир Ефимович теория вероятностей и математическая статистика
§ 22. Метод наибольшего правдоподобия
Кроме метода моментов, который изложен в предыдущем параграфе, существуют и другие методы точечной оценки неизвестных параметров распределения. К ним относится метод наибольшего правдоподобия, предложенный Р. Фишером.
А. Дискретные случайные величины. Пусть X—дискретная случайная величина, которая в результате п испытаний приняла значения хг, х2, . .., хп. Допустим, что вид закона распределения величины X задан, но неизвестен параметр 9, которым определяется этот закон. Требуется найти его точечную оценку.
Обозначим вероятность того, что в результате испытания величина X примет значение х,(/= 1, 2, ..., п), через р(хг, 6).
функцией правдоподобия дискретной случайной вели-ины X называют функцию аргумента 0:
L(*x, х2 ха; в) = р(х1; Q)p(x2; Q)...p(xn; 9),
^е *i, аг2, ..., х„—фиксированные числа.
229
В качестве точечной оценки параметра 9 принимают Та кое его значение 6* = 9*(х1, ха, . . ., х„), при котором фун" кция правдоподобия достигает максимума. Оценку 9* н ~ зывают оценкой наибольшего правдоподобия.
Функции L и lnL достигают максимума при одц0м и том же значении 6, поэтому вместо отыскания максиму^ функции L ищут (что удобнее) максимум функции 1п£
Логарифмической функцией правдоподобия называю^ функцию lnL. Как известно, точку максимума функдии lnZ, аргумента 9 можно искать, например, так:
найти производную—jk—;
приравнять производную нулю и найти критическую точку — корень полученного уравнения (его называют уравнением правдоподобия);
3) найти вторую производную —^-; если вторая
производная при 9 = 9* отрицательна, то 9* — точка максимума.
Найденную точку максимума 9* принимают в качестве оценки наибольшего правдоподобия параметра 9.
Метод наибольшего правдоподобия имеет ряд достоинств: оценки наибольшего правдоподобия, вообще говоря, состоятельны (но они могут быть смещенными), распределены асимптотически нормально (при больших значениях л приближенно нормальны) и имеют наименьшую дисперсию по сравнению с другими асимптотически нормальными оценками; если для оцениваемого параметра 9 существует эффективная оценка 9*, то уравнение правдоподобия имеет единственное решение 9*; этот метод наиболее полно использует данные выборки об оцениваемом параметре, поэтому он особенно полезен в случае малых выборок.
Недостаток метода состоит в том, что он часто требует сложных вычислений.
Замечание 1. Функция правдоподобия — функция от аргумента 6; оценка наибольшего правдоподобия —функция от независимых аргументов хъ х2, ..., хп.
Замечание 2. Оценка наибольшего правдоподобия не всегда совпадает с оценкой, найденной методом моментов.
Пример 1. Найти методом наибольшего правдоподобия параметра % распределения Пуассона
* т \ -Л == *> il ~
;
где т — число произведенных испытаний; Х; — число появлений со о тия в i-м (t = 1, 2 п) опыте (опыт состоит из т испытали ''
230
решение. Составим функцию правдоподобия, учитывая, что
Й=3Я:
L = p(x1; к>р(х2; Я) ... р (х„\ Я) =
^'■е-^ Я*'-е-* }*"-е~К _ *2*'- е-"*1
~" *i! " *2! *'" *„! хг\х2\ . .. хп\
Найдем логарифмическую функцию правдоподобия: lnL = (2*i)ln A,— пк — ]n(Xl!x2\ ... хп\). Найдем первую производную по Я:
d In L ~E X;
Напишем уравнение правдоподобия, для чего приравняем первую производную нулю:
(2 **/*)-«=о.
Найдем критическую точку, для чего решим полученное уравне ние относительно Я: ' _
*.=2 *<7п=^в-
Найдем вторую производную по Я:
d2\nL 2^^
ЙЯ2 ~ Я2 •
Легко видеть, что при к = хв вторая производная отрицательна; следовательно, Я = л:в — точка максимума и, значит, в качестве оценки наибольшого правдоподобия параметра Я распределения Пуассона надо принять выборочную среднюю к* — хв.
Пример 2., Найти методом наибольшего правдоподобия оценку параметра р биномиального распределения
если d /ti независимых испытаниях событие А появилось дс1 = т1 раз
и в п2 независимых испытаниях событие А появилось х2 = т2 раз.
Решение. Составим функцию правдоподобия, учитывая,
Найдем логарифмическую функцию правдоподобия: Найдем первую производную по р:
dp p \—p
. пишем
уравн
Роизводную нулю:
1-р
2
31
Найдем критическую точку, для чего решим полученное ура нение относительно р: в-
Найдем вторую производную по р: d2\nL
dp* ~~ p2 """ (1—P)2
Легко убедиться, что при р = (т1 + т2)/(п1 + п2) вторая пр0Из водная отрицательна; следовательно, P = (rnl-\-m2)l(n1-\-n2)—точк' максимума и, значит, ее надо принять в качестве оценки наибодьа шего правдоподобия неизвестной вероятности р биномиального рас" пределения:
Б. Непрерывные случайные величины. Пусть X— непрерывная случайная величина, которая в ре.
зультате п испытаний приняла значения xlt х2 х
Допустим, что вид плотности распределения / (х) задан, но не известен параметр 9, которым определяется эта функция.
Функцией правдоподобия непрерывной случайной величины X называют функцию аргумента 9:
L (xlt х2, ..., хп; 9) = / (хх; 9) / (*,; 9) ... / (хп; 9),
где х1, х2, ..., хп—фиксированные числа.
Оценку наибольшего правдоподобия неизвестного параметра распределения непрерывной случайной величины ищут так же, как в случае дискретной величины.
Пример 3. Найти методом наибольшего правдоподобия оценку параметра X показательного распределения
ke-u (0<ж<оо),
если в результате п испытаний случайная величина X, распределен ная по показательному закону, приняла значения хь х2 *«•
Решение. Составим функцию правдоподобия, учитывая, что 0 = Я,:
L=f(x1; k)f(x2; К) ... /(*„; X) = (Xe~u ^ **)
Отсюда
Найдем логарифмическую функцию правдоподобия:
In L = nln X, — X У Xj. Найдем первую производную по К: dlnL n
232
Запишем уравнение правдоподобия, для чего приравняем первую нулю:
Найдем критическую точку, для чего решим полученное уравне-йе относительно К:
н x
Найдем вторую производную по X:
/t
Л егко видеть, что при А,= 1/л:в вторая производная отрицательна; ледовательно, Л. == 1 /лгв — точка максимума и, значит, в качестве ценки наибольшего правдоподобия параметра Я, показательного распределения надо принять величину, обратную выборочной средней:
1*=1/*в.
Замечание. Если плотность распределения /(х) непрерывной случайной величины X определяется двумя неизвестными параметрами 6i и 02, то функция правдоподобия является функцией двух независимых аргументов 9Х и Э2:
L=f(xi; еь е,)/(*2; еь в,) ... f(xHi вь е2),
где x-i, х2 хп — наблюдавшиеся значения X. Далее находят ло гарифмическую функцию правдоподобия и для отыскания ее макси мума составляют и решают систему
d]aL_=zQt
П
ример
4. Найти методом наибольшего
правдоподобия оценки параметров
а и о нормального распределения
о у 2л
если в результате п испытаний величина X приняла значения
*ь *• *п-
Решение. Составим функцию правдоподобия, учитывая, что ui = o и 92=о:
V2n "
-<*B-g)Vlg>
Отсюда
233
Найдем логарифмическую функцию правдоподобия:
lnL
= —
п
In
а-4-In
.
, . о'о •
(К 2л)" 2о2
Найдем частные производные по а и по а:
а2 ' da ~ a
Приравняв частные производные нулю и решив полученную си стему двух уравнений относительно а и о2, получим:
Итак, искомые оценки наибольшего правдоподобия: a*="J . a*= V^Ob. Заметим, что первая оценка несмещенная, а вторая сме'
щенная.