Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гмурман.doc
Скачиваний:
4
Добавлен:
01.12.2019
Размер:
4.92 Mб
Скачать

§ 4. Принцип практической невозможности маловероятных событий *

При решении многих практических задач прихо­дится иметь дело с событиями, вероятность которых весьма мала, т. е. близка к нулю. Можно ли считать, что маловероятное событие А в единичном испытании не произойдет? Такого заключения сделать нельзя, так как не исключено, хотя и мало вероятно, что событие А наступит.

Казалось бы, появление или непоявление маловероят­ного события в единичном испытании предсказать невоз­можно. Однако длительный опыт показывает, что мало­вероятное событие в единичном испытании в подавляющем большинстве случаев не наступает. На основании этого факта принимают следующий «принцип практической невозможности маловероятных событий»: если случайное событие имеет очень малую вероятность, то практически можно считать, что в единичном испытании ото собы­тие не наступит.

Естественно возникает вопрос: насколько малой должна быть вероятность события, чтобы можно было считать невозможным его появление в одном испытании? На этот вопрос нельзя ответить однозначно. Для задач, различных *по существу, ответы разные. Например, если вероятность того, что парашют при прыжке не раскроется, равна 0,01, то было бы недопустимым применять такие парашюты. Если же вероятность того, что поезд даль­него следования прибудет с опозданием, равна 0,01, то можно практически быть уверенным, что поезд прибудет вовремя.

Достаточно малую вероятность, при которой (в дан­ной определенной задаче) событие можно считать прак-

35

тически невозможным, называют уровнем значимости^. На практике обычно принимают уровни значимости, заклю\ ченные между 0,01 и 0,05. Уровень значимости, равный 0,01, называют однопроцентным; уровень значимости, равный 0,02, называют двухпроцентным, и т. д.

Подчеркнем, что рассмотренный здесь принцип позво­ляет делать предсказания не только о событиях, имею­щих^ малую вероятность, но и о событиях, вероятность которых близка к единице. Действительно, если событие А имеет вероятность, близкую к нулю, то вероятность противоположного события А близка к единице. С другой стороны, непоявление события А означает наступление противоположного события А. Таким образом, из прин­ципа невозможности маловероятных событий вытекает следующее важное для приложений следствие: если слу­чайное событие имеет вероятность, очень близкую к еди­нице, то практически можно считать, что в единичном испытании это событие наступит. Разумеется, и здесь ответ на вопрос о том, какую вероятность считать близ­кой к единице, зависит от существа задачи.

Задачи

1. В денежно-вещевой лотерее на каждые 10 000 билетов разыгрывается 150 вещевых и 50 денежных выигрышей. Чему равна вероятность выигрыша, безразлично денежного или вещевого, для владельца одного лотерейного билета? Отв. р = 0,02.

2. Вероятность того, что стрелок при одном выстреле выбьет 10 очков, равна 0,1; вероятность выбить 9 очков равна 0,3; вероят­ ность выбить 8 или меньше очков равна 0,6. Найти вероятность того, что при одном выстреле стрелок выбьет не менее 9 очков.

Отв. р = 0,А.

3. В партии из 10 деталей 8 стандартных. Найти вероятность того, что среди наудачу извлеченных 2 деталей есть хотя бы одна стандартная.

Отв. р — 44/45.

4. В ящике 10 деталей, среди которых 2 нестандартных. Найти вероятность того, что в наудачу отобранных 6 деталях окажется не более одной нестандартной детали.

Отв. р = 2/3.

Указание. Если А — нет ни одной нестандартной детали, В —есть одна нестандартная деталь, то

Р [А + В) = Р (А) + Р (В) = Cl/Cto + £ ■ Cl/CU.

5. События А, В, С и D образуют полную группу. Вероятности событий таковы: Р(А)=0,1; Р(В)=0,4; Р(С)=0,3. Чему равна вероятность события D?

Отв. P(D)=0,2.

36

в- По статистическим данным ремонтной мастерской, в среднем йа 20 остановок токарного станка приходится: 10—для смены резца; 3—из-за неисправности привода; 2 — из-за несвоевременной подачи заготовок. Остальные остановки происходят по другим причинам. Найти вероятность остановки станка по другим причинам.

Отв. р = 0,25.

Глава третья

ТЕОРЕМА УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ