
- •§ 1. Испытания и события
- •§ 2. Виды случайных событий
- •§ 3. Классическое определение вероятности
- •§ 4. Основные формулы комбинаторики
- •§ 5. Примеры непосредственного вычисления вероятностей
- •§ 6. Относительная частота. Устойчивость относительной частоты
- •§ 7. Ограниченность классического определения вероятности. Статистическая вероятность
- •§ 8. Геометрические вероятности
- •§ 1. Теорема сложения вероятностей несовместных событий
- •§ 2. Полная группа событий
- •§ 4. Принцип практической невозможности маловероятных событий *
- •§ 1. Произведение событий
- •§ 2. Условная вероятность
- •§ 3. Теорема умножения вероятностей
- •§ 4. Независимые события. Теорема умножения для независимых событий
- •§ 5. Вероятность появления хотя бы одного события
- •§ 1. Теорема сложения вероятностей совместных событий
- •§ 2. Формула полной вероятности
- •§ 3. Вероятность гипотез. Формулы Бейеса
- •§ 1. Формула Бернулли
- •§ 2. Локальная теорема Лапласа
- •§ 3. Интегральная теорема Лапласа
- •§ 4. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
- •§ 1. Случайная величина
- •§ 2. Дискретные и непрерывные случайные величины
- •§ 3. Закон распределения вероятностей дискретной случайной величины
- •§ 4. Биномиальное распределение
- •§ 5. Распределение Пуассона
- •§ 6. Простейший поток событий
- •§ 7. Геометрическое распределение
- •§ 8. Ги пер геометрическое распределение
- •§ 1. Числовые характеристики дискретных случайных величин
- •§ 2. Математическое ожидание дискретной случайной величины
- •§ 3. Вероятностный смысл математического ожидания
- •§ 4. Свойства математического ожидания
- •§ 5. Математическое ожидание числа появлг I события в независимых испытаниях
- •§ 1. Целесообразность введения числовой характеристики рассеяния случайной величины
- •§ 2. Отклонение случайной величины от ее математического ожидания
- •§ 3. Дисперсия дискретной случайной величины
- •§ 4. Формула для вычисления дисперсии
- •§ 5. Свойства дисперсии
- •§ 6. Дисперсия числа появлений события в независимых испытаниях
- •§ 7. Среднее квадратическое отклонение
- •§ 8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •§ 9. Одинаково распределенные взаимно независимые случайные величины
- •§ 10. Начальные и центральные теоретические моменты
- •§ 1. Предварительные замечания
- •§ 2. Неравенство Чебышева
- •§ 3. Теорема Чебышева
- •§ 4. Сущность теоремы Чебышева
- •§ 5. Значение теоремы Чебышева для практики
- •§ 6. Теорема Бернулли
- •§ 1. Определение функции распределения
- •§ 2. Свойства функции распределения
- •§ 3. График функции распределения
- •3. Дискретная случайная величина X задана законом распрс. Деления
- •§ 1. Определение плотности распределения
- •§ 2. Вероятность попадания непрерывной случайной величины в заданный интервал
- •§ 3. Нахождение функции распределения по известной плотности распределения
- •§ 4. Свойства плотности распределения
- •§ 5. Вероятностный смысл плотности распределения
- •§ 6. Закон равномерного распределения вероятностей
- •§ 1. Числовые характеристики непрерывных случайных величин
- •§ 2. Нормальное распределение
- •§ 3. Нормальная кривая
- •§ 4. Влияние параметров нормального распределения на форму нормальной кривой
- •§ 5. Вероятность попадания в заданный интервал нормальной случайной величины
- •§ 6. Вычисление вероятности заданного отклонения
- •§ 7. Правило трех сигм
- •§ 8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
- •§ 9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
- •§10. Функция одного случайного аргумента и ее распределение
- •§ 11. Математическое ожидание функции одного случайного аргумента
- •§ 12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
- •§ 13. Распределение «хи квадрат»
- •§ 14. Распределение Стьюдента
- •§ 15. Распределение f Фишера — Снедекора
- •§ 1. Определение показательного распределения
- •§ 2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
- •§ 3. Числовые характеристики показательного распределения
- •§ 4. Функция надежности
- •§ 5. Показательный закон надежности
- •§ 6. Характеристическое свойство показательно,, закона надежности
- •§ 1. Понятие о системе нескольких случайных величин
- •§ 2. Закон распределения вероятностей дискретной двумерной случайной величины
- •§ 3. Функция распределения двумерной случайной величины
- •§ 4. Свойства функции распределения двумерной случайной величины
- •§ 5. Вероятность попадания случайной точки в полуполосу
- •§ 6. Вероятность попадания случайной точки в прямоугольник
- •§ 7F Плотность совместного распределения вероятностей непрерывной, двумерной случайной величины (двумерная плотность вероятности)
- •§ 8. Нахождение функции распределения системы по известной плотности распределения
- •§ 9. Вероятностный смысл двумерной плотности вероятности
- •§ 10. Вероятность попадания случайной точки в произвольную область
- •§11. Свойства двумерной плотности вероятности
- •§ 12. Отыскание плотностей вероятности составляющих двумерной случайной величины
- •§ 13. Условные законы распределения составляющих системы дискретных случайных величин
- •§ 14. Условные законы распределения составляющих системы непрерывных случайных величин
- •§ 15. Условное математическое ожидание
- •§ 16. Зависимые и независимые случайные величины
- •§ 17. Числовые характеристики системы двух случайных величин. Корреляционный момент. Коэффициент корреляции
- •§ 18. Коррелированность и зависимость случайных величин
- •§ 19. Нормальный закон распределения на плоскости
- •§ 20. Линейная регрессия. Прямые линии среднеквадратической регрессии
- •§ 21. Линейная корреляция. Нормальная корреляция
- •1. Найти законы распределения составляющих дискретной двумерной случайной величины, заданной законом распределения
- •§ 1. Задачи математической статистики
- •§ 2. Краткая историческая справка
- •§ 3. Генеральная и выборочная совокупности
- •§ 4. Повторная и бесповторная выборки. Репрезентативная выборка
- •§ 5. Способы отбора
- •§ 6. Статистическое распределение выборки
- •§ 7. Эмпирическая функция распределения
- •§ 8. Полигон и гистограмма
- •§ 1. Статистические оценки параметров распределения
- •§ 2. Несмещенные, эффективные и состоятельны оценки е
- •§ 3. Генеральная средняя
- •§ 4. Выборочная средняя
- •§ 5. Оценка генеральной средней по выборочной средней. Устойчивость выборочных средних
- •§ 7. Отклонение от общей средней и его свойств
- •§ 8. Генеральная дисперсия
- •§ 9. Выборочная дисперсия
- •§ 10. Формула для вычисления дисперсии
- •§11. Групповая, внутри групповая, межгрупповая и общая дисперсии
- •§ 12. Сложение дисперсий
- •§ 13. Оценка генеральной дисперсии по исправленной выборочной
- •§ 14. Точность оценки, доверительная вероятность (надежность). Доверительный интервал
- •§15. Доверительные интервалы для оценки математического ожидания нормального распределения при известном о
- •§ 16. Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном о
- •§ 17. Оценка истинного значения измеряемой величины
- •§ 18. Доверительные интервалы для оценки среднего квадратического отклонения а нормального распределения
- •§ 19. Оценка точности измерений
- •§ 20. Оценка вероятности (биномиального распределения) по относительной частоте
- •§ 21. Метод моментов для точечной оценки параметров распределения
- •§ 22. Метод наибольшего правдоподобия
- •§ 23. Другие характеристики вариационного ряда
- •§ 1. Условные варианты
- •§ 2. Обычные, начальные и центральные эмпирические моменты
- •§ 3. Условные эмпирические моменты. Отыскание центральных моментов по условным
- •§ 4. Метод произведений для вычисления выборочных средней и дисперсии
- •§ 5. Сведение первоначальных вариант к равноотстоящим
- •§ 6. Эмпирические и выравнивающие (теоретические) частоты
- •§ 7. Построение нормальной кривой по опытным данным
- •§ 8. Оценка отклонения эмпирического распределения от нормального. Асимметрия и эксцесс
- •§ 1. Функциональная, статистическая и корреляционная зависимости
- •§ 2. Условные средние
- •§ 3. Выборочные уравнения регрессии
- •§ 4. Отыскание параметров выборочного уравнения Прямой линии среднеквадратичной регрессии по несгруппированным данным
- •§ 5. Корреляционная таблица
- •§ 7. Выборочный коэффициент корреляции
- •§ 8. Методика вычисления выборочного коэффициента корреляции
- •§ 9. Пример на отыскание выборочного уравнения прямой линии регрессии
- •§ 10. Предварительные соображения к введению меры любой корреляционной связи
- •§ 11. Выборочное корреляционное отношение
- •§ 12. Свойства выборочного корреляционного отношения
- •§13. Корреляционное отношение как мера корреляционной связи. Достоинства и недостатки этой меры
- •§ 14. Простейшие случаи криволинейной корреляции
- •§ 15. Понятие о множественной корреляции
- •§ 1. Статистическая гипотеза. Нулевая
- •§ 2. Ошибки первого и второго рода
- •§ 3. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
- •§ 4. Критическая область. Область принятия гипотезы. Критические точки
- •§ 5. Отыскание правосторонней критической области
- •§ 6. Отыскание левосторонней и двусторонней критических областей
- •§ 7. Дополнительные сведения о выборе критической области. Мощность критерия
- •§ 8. Сравнение двух дисперсий нормальных генеральных совокупностей
- •§ 9. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсией нормальной совокупности
- •§ 10. Сравнение двух средних нормальных
- •"Набл — ,...-. .....» . — 1 fV/o#
- •§ 12. Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых неизвестны и одинаковы (малые независимые выборки)
- •§ 13. Сравнение выборочной средней с гипотетической генеральной средней нормальной совокупности
- •§ 14. Связь между двусторонней критической областью и доверительным интервалом
- •§ 15. Определение минимального объема выборки при сравнении выборочной и гипотетической генеральной средних
- •§16. Пример на отыскание мощности критерия
- •§ 17. Сравнение двух средних нормальных генеральных совокупностей с неизвестными дисперсиями (зависимые выборки)
- •§ 18. Сравнение наблюдаемой относительной частоты с гипотетической вероятностью появления события
- •§ 19. Сравнение двух вероятностей биномиальных распределений
- •§ 20. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам различного объема. Критерий Бартлетта
- •§ 21. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена
- •§ 22. Проверка гипотезы о значимости выборочного коэффициента корреляции
- •§ 24. Методика вычисления теоретических частот нормального распределения
- •§ 25. Выборочный коэффициент ранговой корреляции Спирмена и проверка гипотезы о его значимости
- •§ 26. Выборочный коэффициент ранговой корреляции Кендалла и проверка гипотезы о его значимости
- •§ 27. Критерий Вилкоксона и проверка гипотезы об однородности двух выборок
- •§ 1. Сравнение нескольких средних. Понятие о дисперсионном анализе
- •§ 2. Общая факторная и остаточная суммы квадратов отклонений
- •§ 3. Связь между общей, факторной и остаточной суммами
- •§ 4. Общая, факторная и остаточная дисперсии
- •§ 5. Сравнение нескольких средних методом дисперсионного анализа
- •§ 1. Предмет метода Монте — Карло
- •§ 2. Оценка погрешности метода Монте — Карло
- •§ 3. Случайные числа
- •§ 4. Разыгрывание дискретной случайной величины
- •§ 5. Разыгрывание противоположных событий
- •§ 6. Разыгрывание полной группы событий
- •§ 7. Разыгрывание непрерывной случайной величины. Метод обратных функций
- •§ 8. Метод суперпозиции
- •§ 9. Приближенное разыгрывание нормальной случайной величины
- •§ 1. Цепь Маркова
- •§ 2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода
- •§ 3. Равенство Маркова
- •§ 1. Основные задачи
- •§ 2, Определение случайной функции
- •§ 3. Корреляционная теория случайных функций
- •§ 4. Математическое ожидание случайной функции
- •§ 5. Свойства математического ожидания случайной функции
- •§ 6. Дисперсия случайной функции
- •§ 7. Свойства дисперсии случайной функции
- •§ 8. Целесообразность введения корреляционной функции
- •§ 9. Корреляционная функция случайной Функции
- •§11. Нормированная корреляционная функция
- •§ 12. Взаимная корреляционная функция
- •§ 13. Свойства взаимной корреляционной функции
- •§ 14. Нормированная взаимная корреляционная функция
- •§ 15. Характеристики суммы случайных функций
- •§ 16. Производная случайной функции и ее характеристики
- •§ 17. Интеграл от случайной функции и его характеристики
- •§ 18. Комплексные случайные величины и их числовые характеристики
- •§ 19. Комплексные случайные функции и их характеристики
- •§ 1. Определение стационарной случайной функции
- •§ 2. Свойства корреляционной функции стационарной случайной функции
- •§ 3. Нормированная корреляционная функция стационарной случайной функции
- •§ 4, Стационарно связанные случайные функции
- •§ 5. Корреляционная функция производной стационарной случайной функции
- •§ 6. Взаимная корреляционная функция стационарной случайной функции и ее производной
- •§ 7. Корреляционная функция интеграла от стационарной случайной функции
- •§ 8. Определение характеристик эргодическмх стационарных случайных функций из опыта
- •§ 1. Представление стационарной случайной функции в виде гармонических колебаний со случайными амплитудами и случайными фазами
- •§ 2. Дискретный спектр стационарной случайной функции
- •§ 3. Непрерывный спектр стационарной случайной функции. Спектральная плотность
- •§ 4. Нормированная спектральная плотность
- •§ 5. Взаимная спектральная плотность стационарных и стационарно связанных случайных функций
- •§ 7. Стационарный белый шум
- •§ 8. Преобразование стационарной случайной функции стационарной линейной динамической системой
- •1Истику,
- •1Сч счсчсмсчсчсчсчсм c4c4c4cococjco сосососососо сососососо сосоч-ч- ч1
- •Гмурман Владимир Ефимович теория вероятностей и математическая статистика
§ 7. Ограниченность классического определения вероятности. Статистическая вероятность
Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных исходов которых бесконечно. В таких случаях классическое определение неприменимо. Уже это обстоятельство указывает на ограниченность классического определения. Отмеченный недостаток может быть преодолен, в частности, введением геометрических вероятностей (см. § 8) и, конечно, использованием аксиоматической вероятности {см. § 3, замечание).
Наиболее слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. Обычно о равновозможности элементарных исходов испытания говорят из соображений симметрии. Так, например, предполагают, что игральная кость имеет форму правильного многогранника (куба) и изготовлена из однородного материала. Однако задачи, в которых можно исходить из соображений симметрии, на практике встречаются весьма редко. По этой причине наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение: в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней. Например, если в результате достаточно большого числа испытаний оказалось, что относительная частота весьма близка
26
к числу 0,4, то это число можно принять за статистическую вероятность события.
Легко проверить, что свойства вероятности, вытекающие из классического определения (см. § 3), сохраняются и при статистическом определении вероятности. Действительно, если событие достоверно, то т = п и относительная частота
т/п = п/п = 1,
т. е. статистическая вероятность достоверного события (так же как и в случае классического определения) равна единице.
Если событие невозможно, то т = 0 и, следовательно, относительная частота
О/я = 0,
но,
\
т. е. статистическая вероятность невозможного события равна нулю.
Для любого события О^т^п и, следовательно, относительная частота
т. е. статистическая вероятность любого события заключена между нулем и единицей.
Для существования статистической вероятности события Л требуется:
а) возможность, хотя бы принципиально, производить неограниченное число испытаний, в каждом из которых событие А наступает или не наступает;
б) устойчивость относительных частот появления д в различных сериях достаточно большого числа испыта ний.
Недостатком статистического определения является неоднозначность статистической вероятности; так, в при. веденном примере в качестве вероятности события можно принять не только 0,4, но и 0,39; 0,41 и т. д.
§ 8. Геометрические вероятности
Чтобы преодолеть недостаток классического опре. деления вероятности, состоящий в том, что оно непри. менимо к испытаниям с бесконечным числом исходов( вводят геометрические вероятности—вероятности попа! Дания точки в область (отрезок, часть плоскости и т. д.)_ Пусть отрезок / составляет часть отрезка L. На отре. зок L наудачу поставлена точка. Это означает выполне.
2?
ние следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок / пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок / определяется равенством
Р — Длина //Длина L.
Пример 1. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В (х). Найти вероятность того, что меньший из отрезков ОВ и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.
Решение. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В (х) попадет на отрезок CD длины L/3. Искомая вероятность
P = (L/3)/L=l/3.
Пусть плоская фигура g составляет часть плоской фигуры G. На фигуру G наудачу брошена точка. Это означает выполнение следующих предположений: брошенная точка может оказаться в любой точке фигуры G, вероятность попадания брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g. В этих предположениях вероятность попадания точки в фигуру g определяется равенством
Р — Площадь gl Площадь G.
Пример 2. На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10 см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения относительно большого круга.
Решение. Площадь кольца (фигуры g)
Sg = n(W2 — 52)==75я. Площадь большого круга (фигуры С)
Искомая вероятность
/>=75я/(100я)=0,75.
Пример 3. В сигнализатор поступают сигналы от двух устройств, причем поступление каждого из сигналов равновозможно в любой момент промежутка времени длительностью Т. Моменты поступления сигналов независимы один от другого. Сигнализатор срабатывает, если разность между моментами поступления сигналов меньше
28
t(t< T). Найти вероятность того, что сигнализатор сработает за время Т, если каждое из устройств пошлет по одному сигналу.
р
ешение.
Обозначим моменты поступления сигналов
первого и
второго устройств соответственно через
х
и
у.
В
силу условия задачи
должны выполняться двойные неравенства:
0<ЖГ, (Х«/«57\ Введем
в рассмотрение прямоугольную систему
координат хОу.
В
этой системе двойным
неравенствам удовлетворяют координаты
любой точки квадрата ОТ
AT
(рис.
1). Таким образом, этот квадрат можно
рассматривать как фигуру G,
координаты
точек которой представляют все
возможные значения моментов поступления
сигналов.
1
Сигнализатор срабатывает, если разность между моментами поступления сигналов меньше t, т. е. если у — х < t при у > х и х—у < t при х> у, или, что то же,
у < х+* при у > х, ц > х—t при у < х.
(*) (**)
Неравенство (*) выполняется для тех точек фигуры G, которые лежат выше прямой у — х и ниже прямей y = x-\-t; неравенство (**) имеет место для точек, расположенных ниже прямой у = х и выше прямой у — х — t.
Как видно из рис. 1, все точки, координаты которых удовлетворяют неравенствам (*) и (и.*), принадлежат заштрихованному шестиугольнику. Таким образом, этот шестиугольник можно рассматривать как фигуру g, координаты точек которой являются благоприятствующими моментами времени х и у.
Искомая вероятность
Р = Пл. g/Пл. G = (Г2 — (Т — t)*)/T2 = (t (2Г — t))/T\
Замечание 1. Приведенные определения являются частными случаями общего определения геометрической вероятности. Если обозначить меру (длину, площадь, объем) области через mes, то вероятность попадания точки, брошенной наудачу (в указанном выше смысле) в область g— часть области G, равна
Р — mes g/mes G.
Замечание 2. В случае классического определения вероятность достоверного (невозможного) события равна единице (нулю); справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно). В случае геометрического определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области G равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.
29
Задачи
1. В ящике имеется 50 одинаковых деталей, из них 5 окрашенных. Наудачу вынимают одну деталь. Найти вероятность того, что извлеченная деталь окажется окрашенной. Отв. р = 0,1.
2. Брошена игральная кость. Найти вероятность того, что выпа- ^ёТ'четное число очков.
Отв. р — 0,5.
3. Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 5.
Отв. р = 0,81.
4. В мешочке имеется 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: о, п, р, с, т. Найти вероятность того, что на вынутых по одному и расположен ных «в одну линию» кубиков можно будет прочесть слово «спорт».
Отв. р=» 1/120.
б. На каждой из шести одинаковых карточек напечатана одна из следующих букв: а, т, м, р, с, о. Карточки тщательно перемешаны. Найти вероятность того, что на четырех, вынутых по одной и расположенных «в одну линию» карточках можно будет прочесть слово «трос».
Отв. р=1/Лв= 1/360.
6. Куб, все грани которого окрашены, распилен на тысячу куби ков одинакового размера, которые затем тщательно перемешаны. Найти вероятность того, что наудачу извлеченный кубик будет иметь окрашенных граней: а) одну; б) две; в) три.
Отв. а) 0,384; б) 0,096; в) 0,008.
7. Из тщательно перемешанного полного набора 28 костей домино наудачу извлечена кость. Найти вероятность того, что вторую наудачу извлеченную кость можно приставить к первой, если первая кость: а) оказалась дублем; б) не есть дубль.
Отв. а) 2/9; б) 4/9.
8. В замке на общей оси пять дисков. Каждый диск разделен на шесть секторов, на которых написаны различные буквы. Замок открывается только в том случае, если каждый диск занимает одно определенное положение относительно корпуса замка. Найти вероят ность того, что при произвольной установке дисков замок можно будет открыть.
Отв. р= 1/63.
9. Восемь различных книг расставляются наудачу на одной полке. Найти вероятность того, что две определенные книги ока жутся поставленными рядом.
Отв. р = 7-2!-6!/8! = 1/4.
10. Библиотечка состоит из десяти различных книг, причем пять книг стоят по 4 рубля каждая, три книги — по одному рублю и две книги—по 3 рубля. Найти вероятность того, что взятые наудачу две книги стоят 5 рублей.
Отв. р = Сб-Сз/С?о=1/3.
11. В партии из 100 деталей отдел технического контроля обна ружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей?
Отв. а/=0,05.
30
12. При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0,85. Найти число попаданий, если всего было произведено 120 выстрелов.
Отв. 102 попадания.
13. На отрезок О А длины L числовой оси Ох наудачу постав лена точка В (х). Найти вероятность того, что меньший из отрезков ОВ и ВА имеет длину, меньшую, чем L/3. Предполагается, что веро ятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.
Отв. р = 2/3.
14. Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг квадрата. Предполагается, что вероятность попадания точки в квад рат пропорциональна площади квадрата и не зависит от его распо ложения относительно круга.
Отв. р = 2/я.
15. Задача о встрече. Два студента условились встретиться в определенном месте между 12 и 13 часами дня. Пришедший пер вым ждет второго в течение 1/4 часа, после чего уходит. Найти веро ятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода (в промежутке от 12 до 13 часов).
Указание. Ввести в рассмотрение прямоугольную систему координат хОу и принять для простоты, что встреча должна состояться между 0 и 1 часами.
Отв. Возможные значения координат: 0<х<1, 0<</<1; благоприятствующие встрече значения координат: \у— х|<1/4; Р = 7/16.
Глава вторая
ТЕОРЕМА СЛОЖЕНИЯ ВЕРОЯТНОСТЕЙ