
- •Розповсюдження та тиражування без офіційного дозволу заборонено
- •Розподіл годин по семестрах для спеціальності 6.010102- початкова освіта.
- •Структура залікового кредиту курсу для спеціальності 6.010102 – початкова освіта.
- •Теми практичних занять для спеціальності 6.010102 –початкова освіта.
- •Завдання для самостійної роботи для спеціальності 6.010102 – початкова освіта.
- •Навчальний проект для спеціальності 6.010102 – початкова освіта. (індивідуальні навчально-дослідні завдання)
- •Розподіл балів за видами занять для спеціальності 6.010101 – початкова освіта.
- •Розподіл балів, що присвоюються студентам спеціальності 6.010102 – початкова освіта.
- •9. Методи навчання.
- •10. Методи оцінювання.
- •Норми оцінок поточного контролю.
- •Підсумковий контроль для спеціальності 6.010102 – початкова освіта у ііі семестрі включає в себе:
- •Екзамен. Робочий навчальний план з математики для студентів спеціальності 6.010101 – початкова освіта.
- •Рейтингова відомість для особистого контролю за одержанням балів з математики в ііі семестрі спец.: «Початкова освіта».
- •Питання до екзамену з математики за ііі семестр
- •Методичне забезпечення.
- •Список рекомендованої літератури до курсу математики основна література
- •Додаткова література
- •Методичні посібники
- •Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.1. «Вирази.».
- •1. Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу.
- •Розв’язання:
- •2. Числові рівності та нерівності, їх властивості.
- •3. Вираз із змінною та його область визначення.
- •4. Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей.
- •Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.2. «Рівняння, їх системи і сукупності.».
- •Розв’язання:
- •2. Рівносильні рівняння. Теореми про рівносильність рівнянь.
- •Розв’язання:
- •Доведення:
- •Розв’язання:
- •3. Рівняння з двома змінними. Рівняння лінії. Рівняння прямої та їх види.
- •Малюнок № 6.1. Графік рівняння кола.
- •Малюнок № 6.4.
- •4. Системи та сукупності рівнянь з двома змінними та способи (алгебраїчні та графічні) їх розв’язування.
- •Розв’язання.
- •Розв’язання.
- •Розв’язання.
- •5. Застосування рівнянь та їх систем до розв’язування текстових задач.
- •Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.3. «Нерівності, їх системи і сукупності.».
- •2. Рівносильні нерівності. Теореми про рівносильність нерівностей.
- •Доведення.
- •Доведення.
- •3. Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
- •Розв’язання.
- •Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.4. «Функції.».
- •1. Поняття числової функції, способи їх задання, графік та властивості.
- •2. Пряма пропорційність, її властивості та графік.
- •3. Лінійна функція, її властивості та графік.
- •4. Обернена пропорційність, її властивості та графік.
- •5*. Квадратична функція, її властивості та графік.
- •6*. Операції над функціями та графіками, перетворення графіків.
- •Розв’язання.
- •Розв’язання.
- •Розв’язання.
- •Розв’язання.
- •Запитання для самоконтролю та самостійної роботи студентів.
- •Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.1. «Геометричні побудови на площині.».
- •1. Короткі історичні відомості про виникнення та розвиток геометрії. Поняття про аксіоматичний метод побудови геометрії та історію його розвитку в геометрії.
- •2. Основні геометричні побудови циркулем і лінійкою.
- •Побудова кута, що дорівнює даному (див. Малюнок № 7.1.).
- •Поділ відрізка пополам.
- •Малюнок № 7.2. Поділ кута пополам.
- •Малюнок № 7.5.
- •3. Основні методи геометричних побудов (метод гмт, методи осьової та центральної симетрії, метод паралельного перенесення, метод гомотетії, алгебраїчний метод).
- •Метод геометричних місць точок.
- •Метод симетрії відносно прямої.
- •Метод повороту площини навколо точки.
- •Метод симетрії відносно даної точки.
- •Метод паралельного перенесення.
- •Метод гомотетії.
- •Алгебраїчний метод.
- •4. Побудова правильних многогранників.
- •2. Правильні многогранники та їх види.
- •Доведення:
- •3. Поняття тіла обертання, їх види (циліндр, конус, куля. Сфера) та їх зображення на площині.
- •Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.3. «Величини та їх вимірювання.».
- •1. Поняття величини та її вимірювання. Відображення властивостей реального світу через поняття величини. Види величин.
- •2. Поняття довжини відрізка та способів його вимірювання. Основні властивості довжини. Одиниці вимірювання довжини та співвідношення між ними.
- •3. Поняття площі плоскої фігури, її основні властивості та способи вимірювання. Рівновеликі та рівноскладені фігури. Одиниці вимірювання площі та співвідношення між ними.
- •Малюнок № 7.10.. Квадрати нульового рангу.
- •Малюнок № 7.11. Фігури ф і f.
- •Доведення:
- •4. Виведення формул для знаходження площі паралелограма, трикутника, трапеції. Формули для знаходження площ поверхонь просторових геометричних фігур.
- •Малюнок № 7.12.
- •Малюнок № 7.14.
- •Доведення:
- •Малюнок № 7.16.
- •5*. Поняття об’єму тіла, його властивостей, способів його вимірювання, одиниць вимірювання та співвідношень між ними. Об’єми многогранників та тіл обертання.
- •Запитання для самоконтролю та самостійної роботи студентів.
6*. Операції над функціями та графіками, перетворення графіків.
6*. У математиці досить часто доводиться розв’язувати питання про те, які ж операції можна виконувати над функціями, як при цьому зміниться область визначення D(f) функції, як побудувати графік нової функції. Для того, щоб знайти відповіді на поставлені запитання, розглянемо кілька нових понять.
Означення: сумою функцій f і g називають функцію f+g, яка визначена на множині D(f+g)=D(f)D(g) та для якої виконується умова, що для будь-якого хєD(f+g) справедлива рівність [f+g](x)=f(x)+g(x).
Означення: добутком функцій f і g називають функцію f•g, яка визначена на множині D(f•g)=D(f)D(g) та для якої виконується умова, що для будь-якого хєD(f•g) справедлива рівність f•g(x)=f(x)•g(x).
Для того, щоб одержати функції f+g чи f•g, якщо вони задані аналітично, слід додати чи помножити праві частини функцій. Проілюструємо це на конкретному прикладі.
Вправа: знайти суму та добуток даних функцій y1=x3+3, хє[0;3] і у2=3х+2, хє[0;6].
Розв’язання.
Спочатку знайдемо області визначення суми та добутку функцій. За означенням суми та добутку функцій D(f+g)=[0;3] і D(f•g)=[0;3]. Отже, y1+y2=x3+3+3х+2= x3+3х+5, а y1•y2=(x3+3)(3х+2)=3x4+2x3+9х+6, де хє[0;3].
Цілком зрозуміло, що операцію утворення з двох даних функцій їх суми чи добутку слід називати відповідно додаванням чи множенням функцій. При знаходження суми чи добутку функцій кількість доданків чи множників може бути як завгодно великою, але скінченною. Для того, щоб побудувати графік функції, яка є сумою двох функцій, необхідно додати відповідні ординати, а при побудові графіка добутку двох функцій – відповідні ординати слід перемножити. Покажемо це на конкретному прикладі.
Вправа: побудувати графік функцій: а) у=х+│х│; б) у=х•│х│.
Розв’язання.
У системі координат будуємо графіки двох функцій: у1=х і у2=│х│. Після цього слід відповідно до означення додати відповідні ординати. Щоб це було легше зробити, використаємо означення модуля. Отже, розглянемо два випадки: 1) х≥0; 2) х<0. У першому випадку у1+у2=х+х=2х. Це означає, що на проміжку [0;+∞) графіком суми функцій буде пряма у=2х. Якщо х<0, то у1+у2=х+(-х)=х-х=0. Це означає, що на проміжку (-∞;0) графіком суми функцій буде пряма у=0. Як відомо, це вісь абсцис. Таким чином, графік функції у=х+│х│ складається з двох променів із спільним початком в точці з координатами О(0;0). Міркуючи аналогічно, можна прийти до висновку, що графік функції у=х•│х│ також складатиметься з двох частин: при х≥0 маємо у1•у2=х•х=х²; при х<0 будемо мати у1•у2=х•(-х)= -х². Таким чином, при х≥0 графіком функції у=х•│х│ буде вітка параболи у=х², а при х<0 – вітка параболи у=-х². Пропонуємо студентам виконати відповідні побудови самостійно.
Цілком зрозуміло, що будувати графіки саме таким способом не завжди зручно. Саме тому в математиці сформульовані та доведені твердження, які надають можливість значно спростити відшукання відповіді на запитання: що ж будує графіком функції? Наприклад, як побудувати графік функції у=Af(ax+b)+B, де A, B, a, b – сталі, причому А≠0 і а≠0. Щоб дати відповідь на це запитання сформулюємо і приймемо без доведення наступні леми та наслідки з них.
Лема 1: графік функції g(x), що визначається рівністю g(x)=f(x-α)+β, де (x-α)єD(f), а α і β – сталі, утворюється з графіка функції f паралельним перенесенням, при якому початок координат О(0;0) переходить в точку О′(α;β).
Звернемо увагу на те, що при практичному використанні леми 1 діють інакше: через точку О′(α;β) проводять допоміжні осі координат О′х′ і О′у′. У системі координат х′О′у′ будують графік у′=f(х′). Цей графік відносно системи координат хОу і є графіком функції g(x)=f(x-α)+β.
Лема 2: графік функції
,
де
,
а
- сталі, утворюється з графіка функції
f розтягом від осі абсцис з коефіцієнтом
і наступним розтягом від осі ординат з
коефіцієнтом k.
Із лем 1 і 2 випливають наступні наслідки.
Наслідок 1: графік функції g, що
визначається рівністю
де
,
утворюється з графіка функції f
перетворенням симетрії відносно осі
абсцис.
Наслідок 2: графік функції g, що
визначається рівністю
дн
,
утворюється з графіка функції f
перетворенням симетрії відносно осі
ординат.
Наслідок 3: графік функції g, що
визначається рівністю
де
,
утворюється з графіка функції f
перетворенням симетрії відносно початку
координат, тобто послідовного виконання
перетворень симетрії відносно осей
координат.
Користуючись лемами 1 і 2 та наслідками,
розглянемо алгоритм побудови графіка
функції
,
якщо відомо графік функції
.
Для цього перетворимо функцію: у виразі
ах+b винесемо за дужки число а, тоді
отримаємо
.
Позначимо
,
а тоді у=Аf(a(x-α))+B. Отже, щоб побудувати
графік функції
за графіком функції
потрібно:
перетворити задану функцію до вигляду лем 1 і 2, тобто до виду у=Аf(a(x-α))+B;
у системі координат хОу через точку
проводимо допоміжні осі координат
і
;
у системі координат
будуємо графік функції
як результат розтягу графіка функції
від осі абсцис з коефіцієнтом А і наступного розтягу від осі ординат з коефіцієнтом
. Побудований графік є шуканим. Проілюструємо сказане на наступних прикладах.
Вправа 1: побудувати графік функції
.