
- •Розповсюдження та тиражування без офіційного дозволу заборонено
- •Розподіл годин по семестрах для спеціальності 6.010102- початкова освіта.
- •Структура залікового кредиту курсу для спеціальності 6.010102 – початкова освіта.
- •Теми практичних занять для спеціальності 6.010102 –початкова освіта.
- •Завдання для самостійної роботи для спеціальності 6.010102 – початкова освіта.
- •Навчальний проект для спеціальності 6.010102 – початкова освіта. (індивідуальні навчально-дослідні завдання)
- •Розподіл балів за видами занять для спеціальності 6.010101 – початкова освіта.
- •Розподіл балів, що присвоюються студентам спеціальності 6.010102 – початкова освіта.
- •9. Методи навчання.
- •10. Методи оцінювання.
- •Норми оцінок поточного контролю.
- •Підсумковий контроль для спеціальності 6.010102 – початкова освіта у ііі семестрі включає в себе:
- •Екзамен. Робочий навчальний план з математики для студентів спеціальності 6.010101 – початкова освіта.
- •Рейтингова відомість для особистого контролю за одержанням балів з математики в ііі семестрі спец.: «Початкова освіта».
- •Питання до екзамену з математики за ііі семестр
- •Методичне забезпечення.
- •Список рекомендованої літератури до курсу математики основна література
- •Додаткова література
- •Методичні посібники
- •Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.1. «Вирази.».
- •1. Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу.
- •Розв’язання:
- •2. Числові рівності та нерівності, їх властивості.
- •3. Вираз із змінною та його область визначення.
- •4. Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей.
- •Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.2. «Рівняння, їх системи і сукупності.».
- •Розв’язання:
- •2. Рівносильні рівняння. Теореми про рівносильність рівнянь.
- •Розв’язання:
- •Доведення:
- •Розв’язання:
- •3. Рівняння з двома змінними. Рівняння лінії. Рівняння прямої та їх види.
- •Малюнок № 6.1. Графік рівняння кола.
- •Малюнок № 6.4.
- •4. Системи та сукупності рівнянь з двома змінними та способи (алгебраїчні та графічні) їх розв’язування.
- •Розв’язання.
- •Розв’язання.
- •Розв’язання.
- •5. Застосування рівнянь та їх систем до розв’язування текстових задач.
- •Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.3. «Нерівності, їх системи і сукупності.».
- •2. Рівносильні нерівності. Теореми про рівносильність нерівностей.
- •Доведення.
- •Доведення.
- •3. Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
- •Розв’язання.
- •Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.4. «Функції.».
- •1. Поняття числової функції, способи їх задання, графік та властивості.
- •2. Пряма пропорційність, її властивості та графік.
- •3. Лінійна функція, її властивості та графік.
- •4. Обернена пропорційність, її властивості та графік.
- •5*. Квадратична функція, її властивості та графік.
- •6*. Операції над функціями та графіками, перетворення графіків.
- •Розв’язання.
- •Розв’язання.
- •Розв’язання.
- •Розв’язання.
- •Запитання для самоконтролю та самостійної роботи студентів.
- •Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.1. «Геометричні побудови на площині.».
- •1. Короткі історичні відомості про виникнення та розвиток геометрії. Поняття про аксіоматичний метод побудови геометрії та історію його розвитку в геометрії.
- •2. Основні геометричні побудови циркулем і лінійкою.
- •Побудова кута, що дорівнює даному (див. Малюнок № 7.1.).
- •Поділ відрізка пополам.
- •Малюнок № 7.2. Поділ кута пополам.
- •Малюнок № 7.5.
- •3. Основні методи геометричних побудов (метод гмт, методи осьової та центральної симетрії, метод паралельного перенесення, метод гомотетії, алгебраїчний метод).
- •Метод геометричних місць точок.
- •Метод симетрії відносно прямої.
- •Метод повороту площини навколо точки.
- •Метод симетрії відносно даної точки.
- •Метод паралельного перенесення.
- •Метод гомотетії.
- •Алгебраїчний метод.
- •4. Побудова правильних многогранників.
- •2. Правильні многогранники та їх види.
- •Доведення:
- •3. Поняття тіла обертання, їх види (циліндр, конус, куля. Сфера) та їх зображення на площині.
- •Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.3. «Величини та їх вимірювання.».
- •1. Поняття величини та її вимірювання. Відображення властивостей реального світу через поняття величини. Види величин.
- •2. Поняття довжини відрізка та способів його вимірювання. Основні властивості довжини. Одиниці вимірювання довжини та співвідношення між ними.
- •3. Поняття площі плоскої фігури, її основні властивості та способи вимірювання. Рівновеликі та рівноскладені фігури. Одиниці вимірювання площі та співвідношення між ними.
- •Малюнок № 7.10.. Квадрати нульового рангу.
- •Малюнок № 7.11. Фігури ф і f.
- •Доведення:
- •4. Виведення формул для знаходження площі паралелограма, трикутника, трапеції. Формули для знаходження площ поверхонь просторових геометричних фігур.
- •Малюнок № 7.12.
- •Малюнок № 7.14.
- •Доведення:
- •Малюнок № 7.16.
- •5*. Поняття об’єму тіла, його властивостей, способів його вимірювання, одиниць вимірювання та співвідношень між ними. Об’єми многогранників та тіл обертання.
- •Запитання для самоконтролю та самостійної роботи студентів.
2. Рівносильні нерівності. Теореми про рівносильність нерівностей.
2. Основним загальним методом розв’язування нерівностей, як і рівнянь, є метод перетворень. Такі перетворення повинні бути тотожними або рівносильними, бо в противному випадку ми можемо втратити або одержати сторонні корені. Для того, щоб щоразу не перевіряти чи рівносильними були перетворення, в математиці доводять відповідні теореми. Спочатку введемо означення понять „розв’язок нерівності”, „множина розв’язків нерівності”, а потім доведемо теореми про рівносильність нерівностей.
Означення: розв’язком нерівності f(x)>g(x) називається таке значення х0єX, яке перетворює нерівність із змінною в істинну числову нерівність f(х0)>g(х0).
Означення: сукупність усіх розв’язків нерівності прийнято називати множиною розв’язків нерівності або множиною розв’язків нерівності із змінною називається множина істинності відповідного предикату.
Означення: дві нерівності із змінними, називаються рівносильними, якщо вони задані на одній і тій самій множині і множини їх розв’язків співпадають.
Означення: дві нерівності із змінною, які задані на одній і тій самій множні, називаються рівносильними, якщо всі розв’язки однієї нерівності є розв’язками другої нерівності і навпаки.
Дві нерівності можуть бути рівносильними в одній числовій області і нерівносильними в інший числовій області.
Теорема 1: якщо вираз (x) визначений для всіх хХ, то нерівність f(x)>g(x) (І) рівносильна нерівності f(x)+(x)>g(x)+(x) (II).
Доведення.
Для доведення теореми використаємо означення рівносильних нерівностей. Саме тому доведення складатиметься з двох частин. У першій слід показати, що кожен розв’язок нерівності (І) є розв’язком нерівності (ІІ), а в другій – що кожен розв’язок нерівності (ІІ) є розв’язком нерівності (І). Нехай Т1Х є множиною розв’язків нерівності (І), а Т2Х є множиною істинності нерівності (ІІ). Виберемо довільне х0, яке належить множині Т1 і підставимо його у нерівність (І). Тоді вона перетвориться в істинну числову нерівність f(х0)>g(х0).
За умовою теореми вираз (x) визначений при всіх хХ, а оскільки х0Т1Х, то підставивши його у вираз (x), ми одержимо числовий вираз (х0). Виконавши у цьому виразі відповідні дії, ми одержимо число. Оскільки f(х0)>g(х0) ‑ істинна числова нерівність, а (х0) - числовий вираз, визначений для всіх хХ, то на основі властивостей істинних числових нерівностей нерівність f(х0)+(х0)>g(х0)+(х0) - буде істинною числовою нерівністю. Отже, х0 – розв’язок нерівності (ІІ).
Значення х0 в множині Т1 ми вибирали довільно, а тому наші міркування можна повторити відносно будь-якого хєТ1. Істинну числову нерівність f(х0)+(х0)>g(х0)+(х0) ми можемо одержати із нерівності (ІІ), замінивши в ній х на х0, а це означає, що х0 є розв’язком нерівності (ІІ). Отже, наші міркування можна повторити для будь-якого х0єТ1. Це означає, що кожен розв’язок нерівності (І) є розв’язком нерівності (ІІ), тобто Т1Т2. Таким чином, першу частину теореми доведено.
У другій частині доведемо, що кожен розв’язок нерівності (ІІ) є розв’язком нерівності (І). Нехай Т1Х є множиною розв’язків нерівності (І), а Т2Х є множиною істинності нерівності (ІІ). Виберемо довільне у0, яке належить множині Т2 і підставимо його у нерівність (ІІ). Тоді вона перетвориться в істинну числову нерівність f(у0)+(у0)>g(у0)+(у0). За умовою теореми вираз (x) визначений при всіх хХ, а оскільки у0Т2Х, то підставивши його у вираз (x), ми одержимо числовий вираз (у0). Виконавши у цьому виразі відповідні дії, ми одержимо число. Оскільки f(у0)+(у0)>g(у0)+(у0) ‑ істинна числова нерівність, а (у0) - числовий вираз, визначений для всіх хХ, то на основі властивостей істинних числових нерівностей нерівність f(у0)>g(у0) буде істинною числовою нерівністю.
Значення у0 в множині Т2 ми вибирали довільно, а тому наші міркування можна повторити відносно будь-якого хєТ2. Істинну числову нерівність f(у0)>g(у0) ми можемо одержати із нерівності (І), замінивши в ній х на у0, а це означає, що у0 є розв’язком нерівності (І). Отже, наші міркування можна повторити для будь-якого у0єТ2. Це означає, що кожен розв’язок нерівності (ІІ) є розв’язком нерівності (І), тобто Т2Т1. Таким чином, другу частину теореми доведено. У першій частині ми довели, що Т1Т2, а другій, що Т2Т1. Тоді на основі означення рівності множин Т1=Т2. Це означає, що кожен розв’язок нерівності (І) є розв’язком нерівності (ІІ). Таким чином, теорему доведено повністю, тобто нерівності (І) і (ІІ) рівносильні.
Теорема 2: якщо вираз (х) визначений і набуває додатних значень при всіх хХ, то нерівність f(x)>g(x) (I) рівносильна нерівності f(x)(x)>g(x)(x) (III).
Доведення теореми 2 складатиметься з двох частин і проводиться аналогічно до доведення теореми 1 або теореми 3. Саме тому пропонуємо студентам довести цю теорему самостійно.
Теорема 3: Якщо вираз (х) визначений і набуває від’ємних значень при всіх хХ, то нерівність f(x)>g(x) (I) рівносильна нерівності f(x)(x)<g(x)(x) (IV).