Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книга док.doc
Скачиваний:
0
Добавлен:
01.12.2019
Размер:
5.82 Mб
Скачать

Вулканические возгоны

Генетический тип минеральных видов при вулканических возгонах (эксгаляциях) связан с деятельностью летучих компонентов, отделившихся от магмы и покинувших место ее кристаллизации. Это происходит в местах тектонических трещин и областях активного вулканизма, когда магматический очаг связан через трещины с земной поверхностью. Летучими компонентами вулканических возгонов являются H2O, HCl, NH4Cl, H3BO3, H2S, CO2, P2O5 и др. При выходе на поверхность они частично оседают на стенках трещин жерл в виде возгонов (эксгаляций), образуют конусы и трубы. Главную функцию здесь выполняет процесс окисления:

16 H2S + 16 O2 → 16 H2O + 8 SO2 + 4 S2↓;

16 H2S + 8 SO2 → 16 H2O + 3 S8↓.

Происходит взаимодействие паров хлорного железа с водой:

2 FeCl3 + 3 H2O → Fe2O3↓ + 6 HCl.

Аналогично образуются NaCl, KCl, NH4Cl, H3BO4, ряд сульфатов, сульфидов, квасцы, алуниты. Отложения минералов представлены в виде корок, налетов, друз, натеков. С современным вулканизмом связано образование залежей серного колчедана, железных руд, ртутно-сурьмяных и металлоносных осадков в подводных рифтах. Формирование многих рудных месторождений некоторые авторы объясняют палеовулканизмом. В осаждении руд участвует термодинамический кислородный (на суше) и щелочной (на дне океанов) геохимические процессы.

Пегматитовый процесс

При раскристаллизации магмы часть легколетучих компонентов не имеет возможности уйти из расплава и постепенно отжимается в незакристаллизовавшуюся часть расплава и насыщает его обычно в конце процесса. Такой расплав, перенасыщенный летучими компонентами, называется остаточным, а сам процесс – пегматитовым. Кристаллизация такого расплава протекает иначе.

Геохимические исследования пегматитов были начаты А. Е. Ферсманом (1942). Пегматитовый процесс он разделил на пять этапов и одиннадцать геофаз. Завершающее место этого процесса показано в общем процессе эволюции магматизма:

B (800–700 °C) – в контактной зоне с породой удерживает гра нит или магнетит;

C (700–600 °C) – пегматитовая зона с прорастанием кварца и полевого шпата;

DE (600–500 °C) – образование породы с пегматитовыми жилами, удерживает шерл, мусковит, берилл;

FG (500–400 °C) – флюидно-гидротермальные условия, образующие пневматолитовые минералы – зеленые слюды, альбит, литиевые соединения и др.

HIKL (400– 50 °C) – гидротермальные процессы с образованием зеленых слюд (жильбертит, кукеит), сульфидов, карбонатов, цеолитов.

В пегматитах химические элементы распределены контрастно с перемешиванием легких и тяжелых. Ведущие элементы пегматитов: H, Li, Be, O, Si, Al, Na, K, Rb,Cs, Tr; главные: B, F, Sc, P, Sn; запрещенные: Ne, Co, Ni, As, Se, Br, Kr, Ru, Rh, Pd, In, Os, Ir, Pt, Hg, Xe. Другие элементы относятся к случайным. Таким образом, пегматиты обогащены редкими, преимущественно литофильными и летучими компонентами. Преобладают элементы нечетных порядковых номеров с нечетной валентностью, особенно одно- и трехвалентные.

Наиболее распространены гранитные пегматиты как источники Ta, Li, Cs, оптического флюорита, ювелирных камней, полевого шпата, слюды, пьезокварца и другого ценного сырья. Пегматиты щелочной магмы содержат руды Nb и TR. Менее распространены пегматиты основных и ультраосновных пород. Все они формируются на глубинах от 2 до 15 км и более.

Элементы гранитных пегматитов, как правило, образуют ионы, аналогичные природным газам и представляют собой системы низ­кого энергетического уровня с малыми величинами энергии решеток минералов.

Пегматиты более характерны для докембрийских гранитов, их меньше – в палеозойских и мезозойских. Известны их образования как на щитах, так и в складчатых поясах.

Главные особенности пегматитового процесса в минералооб­разовании, показанные на рис. 13, рассмотрим более лодробно.

Рис. 13. Зональность замкнутого пегматитового тела (И. Т. Бакуменко и др., 2001): 1 – занорыш; 2 – кварцевое ядро; 3 – блоковая (полевошпатовая) зона; 4 – пегматоидная зона;

5 – графическая зона; 6 – аплитовая зона.

  1. Расплав с обилием летучих компонентов менее вязкий и снижает температуру кристаллизации. Состав расплава становится эвтектическим (котектическим), когда идет совместная кристаллизация двух или более минералов из гранитного остаточного расплава, например, полевой шпат и кварц (при обычной кристаллизации полевой шпат образуется раньше кварца). Это приводит к образованию закономерных [«графических» (письменных)] срастаний минералов, которые первоначально получили название пегматит (см. рис. 13).

  2. По мере снижения температуры эвтектическая кристаллизация «графических» агрегатов сменяется образованием крупных индивидов полевого шпата и кварца. Эти агрегаты называются пегматоидными.

  3. Дальнейшее остывание остаточного расплава приводит к смене пегматоидной кристаллизации на образование блоковых агрегатов, иногда по несколько тонн весом, либо с образованием чисто полевошпатовой зоны. Кристаллы другого минерала вытесняются.

  4. После исчерпания материала для кристаллизации блокового полевого шпата остающийся в избытке кварц завершает кристаллизацию, образуя кварцевое ядро с участием постмагматического процесса. Если этот процесс протекает в замкнутой полости внутри гранита, то в пегматитовом теле возникает зональность (см. рис. 13). Если же остаточный расплав переместился по тектоническому нарушению во вмещающие гранитный массив породы, то может возникнуть жильное тело пегматита с той же зональностью и дополнительным формированием внешней зоны – аплитовой. Она обычно сложена мелкозернистым кварц-полевошпатовым агрегатом, который кристаллизуется вдоль стенок трещины с более низкой температурой. В жильных телах «кварцевое ядро» называют кварцевой осью жилы.

  5. К зоне кварцевого ядра (кварцевой оси) бывают приурочены полости (занорыши), стенки которых усажены кристаллами дымчатого кварца, топаза, берилла, турмалина.

  6. Летучие компоненты удерживаются в остаточном расплаве наиболее долго и принимают участие в формировании слюды (мусковита), топаза, турмалина, флюорита, апатита.

  7. Постмагматические растворы могут взаимодействовать с минералами, образовавшимися на предшествующих этапах, выщелачивать, изменять их, вызывая метасоматические замещения, и усложнять состав пегматитового тела [образование слюды, берилла, сподумена (Li), танталит-колумбита (Ta – Nb), касситерита (Sn)].

  8. Пегматиты как продукт кристаллизации остаточного расплава могут реже образовываться при кристаллизации любых пород: габбро-пегматитов, дунит-пегматитов, сиенит-пегматитов, пегматитов нефелиновых сиенитов.

  9. Образование пегматитов происходит на разных, но небольших глубинах: 1,5 – 3,5 км – камерные (хрусталеносные и флюоритонос­ные); 3,5 – 7 – редкометалльные; 7 – 11 – мусковитовые; более 11 км – редкометалльные и керамические.

  10. С гранитными пегматитами связаны промышленные месторождения Li, Be, Nb, Ta, Sn, U, Th, Cs, Rb, редких земель (TR), слюд и керамического сырья. Пегматиты нефелиновых сиенитов и сиенит-пегматиты концентрируют Zr, Hf, U, Th, Nb, Ta, TR, Ti. Пегматитовые занорыши дают драгоценные камни: берилл, турмалин, топаз, хризоберилл, а также пьезокварц, оптический флюорит и турмалин.