
- •1.Предмет и значение логики.
- •7.Содержание и объем понятий.
- •8.Отношения между объемами понятий.
- •9.Определение понятий.
- •18.Сложные суждения.
- •28.Сокращенный категорический силлогизм.
- •34.Индуктивные умозаключения.
- •41.Виды вопросов.
- •42.Предпосылки вопроса.
- •43.Ответ.
- •44.Правила постановки вопросов.
7.Содержание и объем понятий.
Структура понятия – Рх (где Р – свойства, х – предметы).
Основными логическими приёмами формирования понятий являются сравнение, анализ, абстрагирование, синтез, обобщение. Эти логические приёмы используются при формировании новых понятий как в научной деятельности, так и при овладении значениями в процессе обучения.
Функции понятия:1. коммуникативная.ф-я. 2.познават.ф-я. 3. экспрессивная ф-я (эмоц.ф-я связана с псих.личности.)
Понятие – форма мышления, в которой отражаются существенные признаки одноэлементного класса или класса однородных предметов. Мышление можно рассматривать как процесс оперирования понятиями.
Мыслить – это и значит прежде всего отражать мир через понятия, посредством понятий, в форме понятий: это значит уметь аперировать понятиями.
8.Отношения между объемами понятий.
9.Определение понятий.
ОПРЕДЕЛЕНИЕ ПОНЯТИЯ (дефиниция) – логическая операция, раскрыв-я содержание понятия, т. е. выделить, отличить объект от других объектов.
Понятие, содержание которого надо раскрыть, называют определяемым (дефиниендум, Dfd); понятие, раскрывающее содержание определяемого понятия – определяющим (дефиниенс, Dfn).
ОПРЕДЕЛЕНИЕ РЕАЛЬНОЕ – определение, в ходе которого реальный или абстрактный предмет выделяется из группы других предметов по некоторым отличительным признакам.
ОПРЕДЕЛЕНИЕ НОМИНАЛЬНОЕ – определение, с помощью которого формулируется значение некоторого знакового выражения (термина).
ОПРЕДЕЛЕНИЕ ЯВНОЕ – определение, при котором устанавливается некоторое отношение равенства, тождественности между определяемым и определяющим понятиями (через ближайший род и видовое отличие, генетическое, операциональное).
ОПРЕДЕЛЕНИЕ ЧЕРЕЗ БЛИЖАЙШИЙ РОД И ВИДОВОЕ ОТЛИЧИЕ – определение, при котором устанавливаются сначала признаки, позволяющие отнести тот или иной объект (класс объектов) к некоторому родовому понятию, а затем указать его специфические признаки (видовые отличия).
ОПРЕДЕЛЕНИЕ ГЕНЕТИЧЕСКОЕ – определение, где в качестве специфических отличительных признаков выступает способ происхождения или образования, конструирования предмета.
ОПЕРАЦИОНАЛЬНОЕ ОПРЕДЕЛЕНИЕ – определение, при котором предмет может выделяться с помощью указания каких-либо операций, дающих возможность отличить его от других предметов.
ОПРЕДЕЛЕНИЕ НЕЯВНОЕ – определение, где место определяющего понятия заменяет контекст (контекстуальное определение), набор аксиом (аксиоматическое определение) или где определяемый термин используется в выражении понятия, которое ему приписывается в качестве его же смысла (индуктивное определение).
ОПРЕДЕЛЕНИЕ ОСТЕНСИВНОЕ (ДЕМОНСТРАЦИЯ) – определение значения слов или словосочетаний, соответствующих тем или иным предметам, свойствам, отношениям, действиям и т. п. путем их непосредственного показа. Правила определения:
1. Определение должно быть соразмерным (Dfd = Dfn).
2. Определение не должно заключать в себе круг. Возможна ошибка: «круг в определении».
3. Определение должно быть ясным. Нарушение этого правила ведет к логической ошибке, которая называется «определение неизвестного через неизвестное».
СРАВНЕНИЕ – прием, состоящий в указании чего-то существенно общего у предметов, о которых идет речь, и у других предметов, которые берутся для сопоставления.
ОПИСАНИЕ – прием, с помощью которого путем перечисления внешних черт предмета отличают его от других предметов.
ХАРАКТЕРИСТИКА – прием, при котором перечисляются лишь некоторые внутренние, существенные черты человека, явления, предмета.
10.Правила определения понятий.
11.Ограничение понятий.
12.Обобщение понятий.
13.Операции с классами (объемами понятий).
14.Суждение как форма мышления.
15.Деление суждений по качеству и количеству.
16.Распределенность терминов в суждении.
17.Отношения между суждениями по истинности (логический квадрат).