
- •1. Введение
- •1.1. Основные задачи оптимизации локальных сетей
- •1.2. Критерии эффективности работы сети
- •1.2.1. Время реакции
- •1.2.2. Пропускная способность
- •1.2.3. Показатели надежности и отказоустойчивости
- •2. Параметры оптимизации транспортной подсистемы
- •2.1. Влияние на производительность сети типа коммуникационного протокола и его параметров
- •2.1.1. Номинальная и эффективная пропускная способность протокола
- •2.1.2. Влияние на производительность алгоритма доступа к разделяемой среде и коэффициента использования
- •2.1.3. Влияние размера кадра и пакета на производительность сети
- •2.1.4.Назначение максимального размера кадра в гетерогенной сети
- •2.1.5. Время жизни пакета
- •2.1.6. Параметры квитирования
- •2.1.7. Сравнение сетевых технологий по производительности: Ethernet, TokenRing, fddi, 100vg-AnyLan, FastEthernet, atm
- •2.1.8. Сравнение протоколов ip, ipx и NetBios по производительности
- •2.2. Влияние широковещательного служебного трафика на производительность сети
- •2.2.1. Назначение широковещательного трафика
- •2.2.2. Поддержка широковещательного трафика на канальном уровне
- •2.2.3. Широковещательный шторм
- •2.2.4. Поддержка широковещательного трафика на сетевом уровне
- •2.2.5. Виды широковещательного трафика
- •2.2.5.1. Широковещательный трафик сетей NetWare
- •2.2.5.2. Широковещательный трафик сетей tcp/ip
- •2.2.5.3. Широковещательный трафик сетей NetBios
- •2.2.5.4. Широковещательный трафик мостов и коммутаторов, поддерживающих алгоритм SpanningTree
- •2.2.5.5. Ограничение уровня широковещательного трафика в составных сетях с помощью техники спуфинга
- •2.3. Влияние топологии связей и производительности коммуникационных устройств на пропускную способность сети
- •2.3.1. Разделяемая среда передачи как причина снижения производительности сети
- •2.3.2. Повышение производительности путем сегментации сети мостами и коммутаторами
- •2.3.2.1. Разделение общей среды с помощью локальных мостов
- •2.3.2.2. Требования к пропускной способности моста
- •2.3.2.3. Сегментация сетей с помощью коммутаторов
- •2.3.2.4. Оценка необходимой общей производительности коммутатора
- •2.3.3. Влияние маршрутизаторов на производительность сети
- •2.3.4. Как интерпретировать результаты тестирования мостов, коммутаторов и маршрутизаторов
- •2.4. Типичные ошибочные ситуации: влияние на производительность и диагностика
- •2.4.1. Типичные ошибки в кадрах
- •2.4.1.1. Ошибки в кадрах, связанные с коллизиями
- •2.4.1.2. Диагностика коллизий
- •2.4.1.3. Ошибки кадров Ethernet, связанные с длиной и неправильной контрольной суммой
- •2.4.1.4. Ошибки кадров Ethernet в стандарте rmon
- •2.4.2. Типичные ошибки при работе протоколов
- •2.4.2.1. Несоответствие форматов кадров Ethernet
- •2.4.2.2. Потери пакетов и квитанций
- •2.4.2.3. Несоответствие разных способов маршрутизации в составной сети
- •2.4.2.4. Несуществующий адрес и дублирование адресов
- •2.4.2.5. Превышение значений тайм-аута и несогласованные значения тайм-аутов
- •2.5. Настройка параметров аппаратных и программных средств конечных узлов
- •2.5.1. Оптимизация операционных систем
- •2.5.1.1. Критерии оптимизации ос
- •2.5.1.2. Понятие "узкое место"
- •2.5.2. Процедуры оптимизации WindowsNt с помощью утилиты PerformanceMonitor
- •2.5.2.1. Характеристика PerformanceMonitor
- •2.5.2.2. Наблюдение за потреблением ресурсов процессора, дисков и памяти
- •2.5.2.3. Оптимизация сетевого оборудования
- •2.5.2.4. Оптимизация сервиса рабочей станции
- •2.5.2.5. Оптимизация сервера
- •2.5.2.6. Оптимизация режима работы протокола smb
- •2.5.3. Настройка подсистемы ввода-вывода рабочих станций и серверов
- •2.5.3.1. Оптимизация дискового кэша
- •2.5.3.2. Использование raid-массивов для повышения производительности
- •3. Инструменты мониторинга и анализа сети
- •3.1. Классификация средств мониторинга и анализа
- •3.1.1. Системы управления
- •3.1.2. Встроенные средства мониторинга и анализа сетей
- •3.1.2.1. Агенты snmp
- •3.1.2.2. Агенты rmon
- •3.1.3. Анализаторы протоколов
- •3.1.4. Оборудование для диагностики и сертификации кабельных систем
- •3.1.4.1. Основные электромагнитные характеристики кабельных систем
- •3.1.4.2. Сетевые анализаторы
- •3.1.4.3. Кабельные сканеры
- •3.1.4.4. Тестеры
- •3.2. Продукты для мониторинга и анализа
- •3.2.1. Обзор популярных систем управления: hpOpenView, SunSoftSolstice, CabletronSpectrum, ibmNetView
- •3.2.2. Система управления сетями Optivity
- •3.2.2.1. Динамическое обнаружение конфигурации сети
- •3.2.2.2. Программное конфигурирование сети
- •3.2.2.3. Интегрированное управление маршрутизаторами
- •3.2.2.4. Анализ и управление производительностью на основе стандарта rmon
- •3.2.2.5. Упреждающий анализ ошибок и проблем
- •3.2.2.6. Управление устройствами в реальном масштабе времени
- •3.2.2.7. Дополнительные управляющие средства и утилиты
- •3.2.3. Технические характеристики популярных анализаторов протоколов
- •3.2.4. Продукты мониторинга и анализа сетей компании NetworkGeneral
- •3.2.4.1. Foundation Agent, Foundation Probe, Foundation Manager
- •3.2.4.2. Семействопродуктов Distributed Sniffer System
- •3.2.4.3. Портативные анализаторы
- •3.2.4.4. Дополнительные продукты
- •3.2.5. Анализатор протоколов laNalyser компании Novell
- •3.2.6. Продукты компании Microtest
- •3.2.6.1. Многофункциональное устройство Compas компании Microtest
- •3.2.6.2. Кабельные сканеры компании Microtest
- •3.2.7. Средства мониторинга и анализа компании Fluke
- •3.2.7.1. Особенности 68x Enterprise lanMeter
- •3.2.7.2. Функциональные возможности
- •3.2.7.3. Средства анализа протоколов стека NovellNetWare
- •3.2.7.4. Средства анализа протоколов стекаTcp/ip
- •3.2.7.5. Дополнительные функции анализа стека tcp/ip
- •3.2.7.6. Средства анализа протокола NetBios
- •3.2.7.7. Функции проверки аппаратуры и кабелей
- •4. Использование моделирования для оптимизации производительности сети
- •4.1. Методы аналитического, имитационного и натурного моделирования
- •4.2. Модели теории массового обслуживания
- •4.3. Специализированные системы имитационного моделирования вычислительных сетей
- •4.4. Система имитационного моделирования comnet компании caciProducts
- •4.4.1. ComnetBaseliner
- •4.4.2. Comnetiii
- •4.4.2.1. Общая характеристика
- •4.4.2.2. Типы узлов
- •4.4.2.3. Каналы связи и глобальные сети
- •4.4.2.4. Рабочая нагрузка
- •4.4.2.5. Протоколы
- •4.4.2.6. Представление результатов
- •4.4.3. ComnetPredictor
- •4.5. Построение пилотных проектов проектируемых сетей
4.4.2.2. Типы узлов
Система COMNETIII оперирует с узлами трех типов - процессорными узлами, узлами-маршрутизаторами и коммутаторами. Узлы могут присоединяться с помощью портов к коммуникационным каналам любого типа, от каналов локальных сетей до спутниковых линий связи. Узлы и каналы могут характеризоваться средним временем наработки на отказ и средним временем восстановления для моделирования надежности сети.
В COMNETIII моделируется не только взаимодействие компьютеров по сети, но и процесс разделения процессора каждого компьютера между его приложениями. Работа приложения моделируется с помощью команд нескольких типов, в том числе команд обработки данных, отправки и чтения сообщений, чтения и записи данных в файл, установления сессий и приостановки программы до получения сообщений. Для каждого приложения задается так называемый репертуар команд.
Узлы-маршрутизаторы могут моделировать работу маршрутизаторов, коммутаторов, мостов, концентраторов и любых устройств, которые имеют разделяемую внутреннюю шину, с помощью которой пакеты передаются между портами. Шина характеризуется пропускной способностью и количеством независимых каналов. Узел-маршутизатор обладает также всеми характеристиками процессорного узла, так что он может выполнять приложения, которые, например, обновляют таблицы маршрутизации или рассылают маршрутную информацию по сети. Неблокирующие коммутационные узлы могут моделироваться путем задания количества независимых каналов, равного числу модулей коммутатора. Библиотека COMNETIII включает большое количество описаний конкретных моделей маршрутизаторов с параметрами, основанными на результатах тестирования в Harvard NetworkDeviceTestLab.
Узел-коммутатор моделирует работу коммутаторов, а также маршрутизаторов, концентраторов и других устройств, которые передают пакеты с входного порта на выходной с незначительной задержкой.
4.4.2.3. Каналы связи и глобальные сети
Каналы связи моделируются путем задания их типа, а также двух параметров - попускной способности и вносимой задержки распространения. Единицей передаваемых по каналу данных является кадр. Пакеты при передаче по каналам сегментируются на кадры. Каждый канал характеризуется: минимальным и максимальным размером кадра, накладными расходами на кадр и интенсивностью ошибок в кадрах.
В системе COMNETIII можно моделировать все распространенные методы доступа к передающей среде, в том числе ALOHA. CSMA/CD, TokenRing, FDDI и т.п. Каналы "точка-точка" могут также использоваться для моделирования каналов ISDN и SONET/SDH.
COMNETIII включает средства для моделирования глобальных сетей на самом верхнем уровне абстракции. Такое представление глобальных сетей целесообразно, когда задание точных сведений о топологии физических связей и о полном трафике глобальной сети невозмодно или нецелесообразно. Например, нет смысла точно моделировать работу Internet при исследовании передачи трафика между двумя локальными сетями, подключенными к Internet.
COMNETIII позволяет укрупненно моделировать сети FrameRelay, сети с коммутацией ячеек (например, АТМ), сети с коммутацией пакетов (например, Х.25).
При моделировании глобальных сетей имитируется разбиение пакетов на кадры, причем каждый тип глобального сервиса характеризуется минимальным и максимальным размерами кадра и накладными расходами на служебную информацию.
Связь с глобальной сетью имитируется с помощью канала дрступа, который имеет определенные задержку распространения и пропускную способность. Сама глобальная сеть характеризуется задержкой доставки информации от одного канала доступа до другого, вероятностью потери кадра или его принудительного удаления из сети (при нарушении соглашения о параметрах трафика типа CIR). Эти параметры зависят от степени загруженности глобальной сети, которая может быть задана как нормальная, умеренная и высокая. Имеется возможность моделировать виртуальные каналы в сети.