
- •1. Введение
- •1.1. Основные задачи оптимизации локальных сетей
- •1.2. Критерии эффективности работы сети
- •1.2.1. Время реакции
- •1.2.2. Пропускная способность
- •1.2.3. Показатели надежности и отказоустойчивости
- •2. Параметры оптимизации транспортной подсистемы
- •2.1. Влияние на производительность сети типа коммуникационного протокола и его параметров
- •2.1.1. Номинальная и эффективная пропускная способность протокола
- •2.1.2. Влияние на производительность алгоритма доступа к разделяемой среде и коэффициента использования
- •2.1.3. Влияние размера кадра и пакета на производительность сети
- •2.1.4.Назначение максимального размера кадра в гетерогенной сети
- •2.1.5. Время жизни пакета
- •2.1.6. Параметры квитирования
- •2.1.7. Сравнение сетевых технологий по производительности: Ethernet, TokenRing, fddi, 100vg-AnyLan, FastEthernet, atm
- •2.1.8. Сравнение протоколов ip, ipx и NetBios по производительности
- •2.2. Влияние широковещательного служебного трафика на производительность сети
- •2.2.1. Назначение широковещательного трафика
- •2.2.2. Поддержка широковещательного трафика на канальном уровне
- •2.2.3. Широковещательный шторм
- •2.2.4. Поддержка широковещательного трафика на сетевом уровне
- •2.2.5. Виды широковещательного трафика
- •2.2.5.1. Широковещательный трафик сетей NetWare
- •2.2.5.2. Широковещательный трафик сетей tcp/ip
- •2.2.5.3. Широковещательный трафик сетей NetBios
- •2.2.5.4. Широковещательный трафик мостов и коммутаторов, поддерживающих алгоритм SpanningTree
- •2.2.5.5. Ограничение уровня широковещательного трафика в составных сетях с помощью техники спуфинга
- •2.3. Влияние топологии связей и производительности коммуникационных устройств на пропускную способность сети
- •2.3.1. Разделяемая среда передачи как причина снижения производительности сети
- •2.3.2. Повышение производительности путем сегментации сети мостами и коммутаторами
- •2.3.2.1. Разделение общей среды с помощью локальных мостов
- •2.3.2.2. Требования к пропускной способности моста
- •2.3.2.3. Сегментация сетей с помощью коммутаторов
- •2.3.2.4. Оценка необходимой общей производительности коммутатора
- •2.3.3. Влияние маршрутизаторов на производительность сети
- •2.3.4. Как интерпретировать результаты тестирования мостов, коммутаторов и маршрутизаторов
- •2.4. Типичные ошибочные ситуации: влияние на производительность и диагностика
- •2.4.1. Типичные ошибки в кадрах
- •2.4.1.1. Ошибки в кадрах, связанные с коллизиями
- •2.4.1.2. Диагностика коллизий
- •2.4.1.3. Ошибки кадров Ethernet, связанные с длиной и неправильной контрольной суммой
- •2.4.1.4. Ошибки кадров Ethernet в стандарте rmon
- •2.4.2. Типичные ошибки при работе протоколов
- •2.4.2.1. Несоответствие форматов кадров Ethernet
- •2.4.2.2. Потери пакетов и квитанций
- •2.4.2.3. Несоответствие разных способов маршрутизации в составной сети
- •2.4.2.4. Несуществующий адрес и дублирование адресов
- •2.4.2.5. Превышение значений тайм-аута и несогласованные значения тайм-аутов
- •2.5. Настройка параметров аппаратных и программных средств конечных узлов
- •2.5.1. Оптимизация операционных систем
- •2.5.1.1. Критерии оптимизации ос
- •2.5.1.2. Понятие "узкое место"
- •2.5.2. Процедуры оптимизации WindowsNt с помощью утилиты PerformanceMonitor
- •2.5.2.1. Характеристика PerformanceMonitor
- •2.5.2.2. Наблюдение за потреблением ресурсов процессора, дисков и памяти
- •2.5.2.3. Оптимизация сетевого оборудования
- •2.5.2.4. Оптимизация сервиса рабочей станции
- •2.5.2.5. Оптимизация сервера
- •2.5.2.6. Оптимизация режима работы протокола smb
- •2.5.3. Настройка подсистемы ввода-вывода рабочих станций и серверов
- •2.5.3.1. Оптимизация дискового кэша
- •2.5.3.2. Использование raid-массивов для повышения производительности
- •3. Инструменты мониторинга и анализа сети
- •3.1. Классификация средств мониторинга и анализа
- •3.1.1. Системы управления
- •3.1.2. Встроенные средства мониторинга и анализа сетей
- •3.1.2.1. Агенты snmp
- •3.1.2.2. Агенты rmon
- •3.1.3. Анализаторы протоколов
- •3.1.4. Оборудование для диагностики и сертификации кабельных систем
- •3.1.4.1. Основные электромагнитные характеристики кабельных систем
- •3.1.4.2. Сетевые анализаторы
- •3.1.4.3. Кабельные сканеры
- •3.1.4.4. Тестеры
- •3.2. Продукты для мониторинга и анализа
- •3.2.1. Обзор популярных систем управления: hpOpenView, SunSoftSolstice, CabletronSpectrum, ibmNetView
- •3.2.2. Система управления сетями Optivity
- •3.2.2.1. Динамическое обнаружение конфигурации сети
- •3.2.2.2. Программное конфигурирование сети
- •3.2.2.3. Интегрированное управление маршрутизаторами
- •3.2.2.4. Анализ и управление производительностью на основе стандарта rmon
- •3.2.2.5. Упреждающий анализ ошибок и проблем
- •3.2.2.6. Управление устройствами в реальном масштабе времени
- •3.2.2.7. Дополнительные управляющие средства и утилиты
- •3.2.3. Технические характеристики популярных анализаторов протоколов
- •3.2.4. Продукты мониторинга и анализа сетей компании NetworkGeneral
- •3.2.4.1. Foundation Agent, Foundation Probe, Foundation Manager
- •3.2.4.2. Семействопродуктов Distributed Sniffer System
- •3.2.4.3. Портативные анализаторы
- •3.2.4.4. Дополнительные продукты
- •3.2.5. Анализатор протоколов laNalyser компании Novell
- •3.2.6. Продукты компании Microtest
- •3.2.6.1. Многофункциональное устройство Compas компании Microtest
- •3.2.6.2. Кабельные сканеры компании Microtest
- •3.2.7. Средства мониторинга и анализа компании Fluke
- •3.2.7.1. Особенности 68x Enterprise lanMeter
- •3.2.7.2. Функциональные возможности
- •3.2.7.3. Средства анализа протоколов стека NovellNetWare
- •3.2.7.4. Средства анализа протоколов стекаTcp/ip
- •3.2.7.5. Дополнительные функции анализа стека tcp/ip
- •3.2.7.6. Средства анализа протокола NetBios
- •3.2.7.7. Функции проверки аппаратуры и кабелей
- •4. Использование моделирования для оптимизации производительности сети
- •4.1. Методы аналитического, имитационного и натурного моделирования
- •4.2. Модели теории массового обслуживания
- •4.3. Специализированные системы имитационного моделирования вычислительных сетей
- •4.4. Система имитационного моделирования comnet компании caciProducts
- •4.4.1. ComnetBaseliner
- •4.4.2. Comnetiii
- •4.4.2.1. Общая характеристика
- •4.4.2.2. Типы узлов
- •4.4.2.3. Каналы связи и глобальные сети
- •4.4.2.4. Рабочая нагрузка
- •4.4.2.5. Протоколы
- •4.4.2.6. Представление результатов
- •4.4.3. ComnetPredictor
- •4.5. Построение пилотных проектов проектируемых сетей
4.2. Модели теории массового обслуживания
Используемые в настоящее время в локальных сетях протоколы канального уровня используют методы доступа к среде, основанные на ее совместном использовании несколькими узлами за счет разделения во времени. В этом случае, как и во всех случаях разделения ресурсов со случайным потоком запросов, могут возникать очереди. Для описания этого процесса обычно используются модели теории массового обслуживания.
Механизм разделения среды протокола Ethernet упрощенно описывается простейшей моделью типа M/M/1 - одноканальной моделью с пуассоновским потоком заявок и показательным законом распределения времени обслуживания. Она хорошо описывает процесс обработки случайно поступающих заявок на обслуживание системами с одним обслуживающим прибором со случайным временем обслуживания и буфером для хранения поступающих заявок на время, пока обслуживающий прибор занят выполнением другой заявки (рисунок 4.1). Передающая среда Ethernet представлена в этой модели обслуживающим прибором, а пакеты соответствуют заявкам.
Введем обозначения: l - интенсивность поступления заявок, в данном случае это среднее число пакетов, претендующих на передачу в среде в единицу времени, b - среднее время обслуживания заявки (без учета времени ожидания обслуживания), то есть среднее время передачи пакета в среде с учетом паузы между пакетами в 9.6 мкс, r - коэффициент загрузки обслуживающего прибора, в данном случае это коэффициент использования среды, r = lb.
В теории массового обслуживания для данной модели получены следующие результаты: среднее время ожидания заявки в очереди (время ожидания пакетом доступа к среде) W равно:
Рис. 4.1. Применение модели теории массового обслуживания M/M/1 для анализа трафика в сети Ethernet
4.3. Специализированные системы имитационного моделирования вычислительных сетей
Существуют специальные, ориентированные на моделирование вычислительных сетей программные системы, в которых процесс создания модели упрощен. Такие программные системы сами генерируют модель сети на основе исходных данных о ее топологии и используемых протоколах, об интенсивностях потоков запросов между компьютерами сети, протяженности линий связи, о типах используемого оборудования и приложений. Программные системы моделирования могут быть узко специализированными и достаточно универсальными, позволяющие имитировать сети самых различных типов. Качество результатов моделирования в значительной степени зависит от точности исходных данных о сети, переданных в систему имитационного моделирования.
Программные системы моделирования сетей - инструмент, который может пригодиться любому администратору корпоративной сети, особенно при проектировании новой сети или внесении кардинальных изменений в уже существующую. Продукты данной категории позволяют проверить последствия внедрения тех или иных решений еще до оплаты приобретаемого оборудования. Конечно, большинство из этих программных пакетов стоят достаточно дорого, но и возможная экономия может быть тоже весьма ощутимой.
Программы имитационного моделирования сети используют в своей работе информацию о пространственном расположении сети, числе узлов, конфигурации связей, скоростях передачи данных, используемых протоколах и типе оборудования, а также о выполняемых в сети приложениях.
Обычно имитационная модель строится не с нуля. Существуют готовые имитационные модели основных элементов сетей: наиболее распространенных типов маршрутизаторов, каналов связи, методов доступа, протоколов и т.п. Эти модели отдельных элементов сети создаются на основании различных данных: результатов тестовых испытаний реальных устройств, анализа принципов их работы, аналитических соотношений. В результате создается библиотека типовых элементов сети, которые можно настраивать с помощью заранее предусмотренных в моделях параметров.
Системы имитационного моделирования обычно включают также набор средств для подготовки исходных данных об исследуемой сети - предварительной обработки данных о топологии сети и измеренном трафике. Эти средства могут быть полезны, если моделируемая сеть представляет собой вариант существующей сети и имеется возможность провести в ней измерения трафика и других параметров, нужных для моделирования. Кроме того, система снабжается средствами для статистической обработки полученных результатов моделирования.
В следующей таблице приведены характеристики нескольких популярных систем имитационного моделирования различного класса - от простых программ, предназначенных для установки на персональном компьютере, до мощных систем, включающих библиотеки большинства имеющихся на рынке коммуникационных устройств и позволяющих в значительной степени автоматизировать исследование изучаемой сети.
Компания и продукт |
Стоимость(долл) |
Тип сети |
Требуемые ресурсы |
Примечания |
American HYTech, Prophesy |
1495 |
ЛС |
8МбОП, 6 Мбдиск, DOS, Windows, OS/2 |
Оценивание производительности при работе с текстовыми и графическими данными по отдельным сегментам и сети в целом |
CACI Product, COMNET III |
34500-39500 |
ЛС, ГС |
32 МбОП, 100 Мбдиск, Windows, Windows NT, OS/2, Unix |
Моделируетсети X.25, ATM, Frame Relay, связи LAN-WAN, SNA, DECnet, протоколы OSPF, RIP. Доступ CSMA/CD и токенный доступ, FDDI и др. Встроенная библиотека марщрутизаторов 3COM, Cisco, DEC, HP, Wellfleat, ... |
Make System, NetMaker XA |
6995-14995 |
ЛС, ГС |
128 МбОП, 2000 Мбдиск, AIX, Sun OS, Sun Solaris |
Проверка данных о топологии сети; импорт информации о трафике, получаемой в реальном времени |
NetMagic System,StressMagik |
2995 |
ЛС |
2 МбОП, 8 МБдиск, Windows |
Поддержка стандартных тестов измерения производительности; имитация пиковой нагрузки на файл-сервер |
Network Analysis Center, MIND |
9400-70000 |
ГС |
8 MбОП, 65 Мбдиск, DOS, Windows |
Средство проектирования, оптимизации сети, содержит данные о стоимости типичных конфигураций с возможностью точного оценивания производительности |
Network Design and Analysis Group, AutoNet/ Designer |
25000 |
ГС |
8 MбОП, 40 Мбдиск, Windows, OS/2 |
Определение оптимального расположения концентратора в ГС, возможность оценки экономии средств за счет снижения тарифной платы, смены поставщика услуг и обновления оборудования; сравнение вариантов связи через ближайшую и оптимальную точку доступа, а также через мост и местную телефонную сеть |
Network Design and Analysis Group, AutoNet/ MeshNET |
30000 |
ГС |
8 MбОП, 40 Мбдиск, Windows, OS/2 |
Моделирование полосы пропускания и оптимизация расходов на организацию ГС путем имитации поврежденных линий, поддержка тарифной сетки компаний AT & T, Sprint, WiTel, Bell |
Network Design and Analysis Group, AutoNet/ Performance-1 |
4000 |
ГС |
8 MбОП, 1 Мбдиск, Windows, OS/2 |
Моделирование производительности иерархических сетей путем анализа чувствительности к длительности задержки, времени ответа, а также узких мест в структуре сети |
Network Design and Analysis Group, AutoNet/ Performance-3 |
6000 |
ГС |
8 MбОП, 3 Мбдиск, Windows, OS/2 |
Моделирование производительности многопротокольных объединений локальных и глобальных сетей; оценивание задержек в очередях, прогнозирование времени ответа, а также узких мест в структуре сети; учет реальных данных о трафике, поступающих от сетевых анализаторов |
System& Networks, BONES |
20000-40000 |
ЛС, ГС |
32 MбОП, 80 Мбдиск, Sun OS, Sun Solaris, HP-UX |
Анализ воздействия приложений клиент-сервер и новых технологий на работу сети |
MIL3,Opnet |
16000-40000 |
|
16 МбОП, 100 Мбдиск, DEC AXP, Sun OS, Sun Solaris, HP-UX |
Имеет библиотеку различных сетевых устройств, поддерживает анимацию, генерирует карту сети, моделирует полосу пропускания. |