
- •1. Введение
- •1.1. Основные задачи оптимизации локальных сетей
- •1.2. Критерии эффективности работы сети
- •1.2.1. Время реакции
- •1.2.2. Пропускная способность
- •1.2.3. Показатели надежности и отказоустойчивости
- •2. Параметры оптимизации транспортной подсистемы
- •2.1. Влияние на производительность сети типа коммуникационного протокола и его параметров
- •2.1.1. Номинальная и эффективная пропускная способность протокола
- •2.1.2. Влияние на производительность алгоритма доступа к разделяемой среде и коэффициента использования
- •2.1.3. Влияние размера кадра и пакета на производительность сети
- •2.1.4.Назначение максимального размера кадра в гетерогенной сети
- •2.1.5. Время жизни пакета
- •2.1.6. Параметры квитирования
- •2.1.7. Сравнение сетевых технологий по производительности: Ethernet, TokenRing, fddi, 100vg-AnyLan, FastEthernet, atm
- •2.1.8. Сравнение протоколов ip, ipx и NetBios по производительности
- •2.2. Влияние широковещательного служебного трафика на производительность сети
- •2.2.1. Назначение широковещательного трафика
- •2.2.2. Поддержка широковещательного трафика на канальном уровне
- •2.2.3. Широковещательный шторм
- •2.2.4. Поддержка широковещательного трафика на сетевом уровне
- •2.2.5. Виды широковещательного трафика
- •2.2.5.1. Широковещательный трафик сетей NetWare
- •2.2.5.2. Широковещательный трафик сетей tcp/ip
- •2.2.5.3. Широковещательный трафик сетей NetBios
- •2.2.5.4. Широковещательный трафик мостов и коммутаторов, поддерживающих алгоритм SpanningTree
- •2.2.5.5. Ограничение уровня широковещательного трафика в составных сетях с помощью техники спуфинга
- •2.3. Влияние топологии связей и производительности коммуникационных устройств на пропускную способность сети
- •2.3.1. Разделяемая среда передачи как причина снижения производительности сети
- •2.3.2. Повышение производительности путем сегментации сети мостами и коммутаторами
- •2.3.2.1. Разделение общей среды с помощью локальных мостов
- •2.3.2.2. Требования к пропускной способности моста
- •2.3.2.3. Сегментация сетей с помощью коммутаторов
- •2.3.2.4. Оценка необходимой общей производительности коммутатора
- •2.3.3. Влияние маршрутизаторов на производительность сети
- •2.3.4. Как интерпретировать результаты тестирования мостов, коммутаторов и маршрутизаторов
- •2.4. Типичные ошибочные ситуации: влияние на производительность и диагностика
- •2.4.1. Типичные ошибки в кадрах
- •2.4.1.1. Ошибки в кадрах, связанные с коллизиями
- •2.4.1.2. Диагностика коллизий
- •2.4.1.3. Ошибки кадров Ethernet, связанные с длиной и неправильной контрольной суммой
- •2.4.1.4. Ошибки кадров Ethernet в стандарте rmon
- •2.4.2. Типичные ошибки при работе протоколов
- •2.4.2.1. Несоответствие форматов кадров Ethernet
- •2.4.2.2. Потери пакетов и квитанций
- •2.4.2.3. Несоответствие разных способов маршрутизации в составной сети
- •2.4.2.4. Несуществующий адрес и дублирование адресов
- •2.4.2.5. Превышение значений тайм-аута и несогласованные значения тайм-аутов
- •2.5. Настройка параметров аппаратных и программных средств конечных узлов
- •2.5.1. Оптимизация операционных систем
- •2.5.1.1. Критерии оптимизации ос
- •2.5.1.2. Понятие "узкое место"
- •2.5.2. Процедуры оптимизации WindowsNt с помощью утилиты PerformanceMonitor
- •2.5.2.1. Характеристика PerformanceMonitor
- •2.5.2.2. Наблюдение за потреблением ресурсов процессора, дисков и памяти
- •2.5.2.3. Оптимизация сетевого оборудования
- •2.5.2.4. Оптимизация сервиса рабочей станции
- •2.5.2.5. Оптимизация сервера
- •2.5.2.6. Оптимизация режима работы протокола smb
- •2.5.3. Настройка подсистемы ввода-вывода рабочих станций и серверов
- •2.5.3.1. Оптимизация дискового кэша
- •2.5.3.2. Использование raid-массивов для повышения производительности
- •3. Инструменты мониторинга и анализа сети
- •3.1. Классификация средств мониторинга и анализа
- •3.1.1. Системы управления
- •3.1.2. Встроенные средства мониторинга и анализа сетей
- •3.1.2.1. Агенты snmp
- •3.1.2.2. Агенты rmon
- •3.1.3. Анализаторы протоколов
- •3.1.4. Оборудование для диагностики и сертификации кабельных систем
- •3.1.4.1. Основные электромагнитные характеристики кабельных систем
- •3.1.4.2. Сетевые анализаторы
- •3.1.4.3. Кабельные сканеры
- •3.1.4.4. Тестеры
- •3.2. Продукты для мониторинга и анализа
- •3.2.1. Обзор популярных систем управления: hpOpenView, SunSoftSolstice, CabletronSpectrum, ibmNetView
- •3.2.2. Система управления сетями Optivity
- •3.2.2.1. Динамическое обнаружение конфигурации сети
- •3.2.2.2. Программное конфигурирование сети
- •3.2.2.3. Интегрированное управление маршрутизаторами
- •3.2.2.4. Анализ и управление производительностью на основе стандарта rmon
- •3.2.2.5. Упреждающий анализ ошибок и проблем
- •3.2.2.6. Управление устройствами в реальном масштабе времени
- •3.2.2.7. Дополнительные управляющие средства и утилиты
- •3.2.3. Технические характеристики популярных анализаторов протоколов
- •3.2.4. Продукты мониторинга и анализа сетей компании NetworkGeneral
- •3.2.4.1. Foundation Agent, Foundation Probe, Foundation Manager
- •3.2.4.2. Семействопродуктов Distributed Sniffer System
- •3.2.4.3. Портативные анализаторы
- •3.2.4.4. Дополнительные продукты
- •3.2.5. Анализатор протоколов laNalyser компании Novell
- •3.2.6. Продукты компании Microtest
- •3.2.6.1. Многофункциональное устройство Compas компании Microtest
- •3.2.6.2. Кабельные сканеры компании Microtest
- •3.2.7. Средства мониторинга и анализа компании Fluke
- •3.2.7.1. Особенности 68x Enterprise lanMeter
- •3.2.7.2. Функциональные возможности
- •3.2.7.3. Средства анализа протоколов стека NovellNetWare
- •3.2.7.4. Средства анализа протоколов стекаTcp/ip
- •3.2.7.5. Дополнительные функции анализа стека tcp/ip
- •3.2.7.6. Средства анализа протокола NetBios
- •3.2.7.7. Функции проверки аппаратуры и кабелей
- •4. Использование моделирования для оптимизации производительности сети
- •4.1. Методы аналитического, имитационного и натурного моделирования
- •4.2. Модели теории массового обслуживания
- •4.3. Специализированные системы имитационного моделирования вычислительных сетей
- •4.4. Система имитационного моделирования comnet компании caciProducts
- •4.4.1. ComnetBaseliner
- •4.4.2. Comnetiii
- •4.4.2.1. Общая характеристика
- •4.4.2.2. Типы узлов
- •4.4.2.3. Каналы связи и глобальные сети
- •4.4.2.4. Рабочая нагрузка
- •4.4.2.5. Протоколы
- •4.4.2.6. Представление результатов
- •4.4.3. ComnetPredictor
- •4.5. Построение пилотных проектов проектируемых сетей
2.2.5.2. Широковещательный трафик сетей tcp/ip
Как уже отмечалось, в сетях TCP/IP широковещательный трафик используется гораздо реже, чем в сетях NetWare. Широковещательный трафик в сетях TCP/IP создают протоколы разрешения IP-адресов ARP и RARP (реверсивный ARP), а также протоколы обмена маршрутной информацией RIPIP и OSPF. Протоколы ARP и RARP используются только в локальных сетях, где широковещательность поддерживается на канальном уровне. Протокол RIPIP принципиально ничем не отличается от протокола RIPIPX, а протокол OSPF является протоколом типа "состояния связей" как и протокол NLSP, поэтому он создает широковещательный трафик гораздо меньшей интенсивности, чем RIP.
2.2.5.3. Широковещательный трафик сетей NetBios
Протокол NetBIOS широко используется в небольших сетях, не разделенных маршрутизаторами на части. Этот протокол поддерживается в операционных системах WindowsforWorkgroups и WindowsNT компании Microsoft, в операционной системе OS/2 Warp компании IBM, а также в некоторых версиях Unix. NetBIOS используется не только как коммуникационный протокол, но и как интерфейс к протоколам, выполняющим транспортные функции в сети, например, к протоколам TCP, UDP или IPX. Последняя роль NetBIOS связана с тем, что в ОС, традиционно использовавших NetBIOS в качестве коммуникационного протокола, многие приложения и протоколы прикладного уровня были написаны в расчете на API, предоставляемый протоколом NetBIOS. При замене протокола NetBIOS на другие транспортные протоколы разработчики приложений и ОС захотели оставить свои программные продукты в неизменном виде, поэтому появились реализации интерфейса NetBIOS, оторванные от его функций как коммуникационного протокола, и выполняющие роль некоторой прослойки, транслирующей запросы одного API в другой.
Основным источником широковещательного трафика в сетях, использующих NetBIOS либо в качестве интерфейса, либо в качестве протокола, является служебный протокол разрешения имен, который ставит в соответствие символьному имени компьютера его МАС-адрес. Все компьютеры, поддерживающие NetBIOS, периодически рассылают по сети запросы и ответы NameQuery и NameRequest, с помощью которых это соответствие поддерживается. При большом количестве компьютеров уровень широковещательного трафика может быть весьма высоким.
Маршрутизаторы обычно не пропускают широковещательный трафик NetBIOS между сетями.
Для уменьшения уровня этого трафика необходимо использовать централизованную службу имен, подобную службе WINS компании Microsoft.
2.2.5.4. Широковещательный трафик мостов и коммутаторов, поддерживающих алгоритм SpanningTree
Мосты и коммутаторы используют алгоритм покрывающего дерева SpanningTree для поддержания в сети резервных избыточных связей и перехода на них в случае отказа одной из основных связей. Алгоритм работы мостов и коммутаторов не позволяет использовать избыточные связи в основном режиме работы (при такой топологии связей кадры могут зацикливаться или дублироваться), поэтому основной задачей алгоритма SpanningTree является нахождение топологии дерева, покрывающей исходную топологию сети.
Для создания древовидной конфигурации мосты и коммутаторы, поддерживающие алгоритм SpanningTree постоянно обмениваются специальными служебными кадрами, которые вкладываются в кадры MAC-уровня. Эти кадры рассылаются по всем портам моста/коммутатора, за исключением того, на который они пришли, точно так же, как и пакеты протоколов RIP или OSPF маршрутизаторами. На основании этой служебной информации некоторые порты мостов переводятся в резервное состояние, и тем самым создается топология покрывающего дерева.
После установления этой топологии широковещательный трафик алгоритма SpanningTree не прекращается. Мосты/коммутаторы продолжают распространять по сети кадры протокола SpanningTree для контроля работоспособности связей в сети. Если какой-либо мост/коммутатор перестает периодически получать такие кадры, то он снова активизурует процедуру построения топологии покрывающего дерева.
Уровень широковещательного трафика протокола SpanningTree прямо пропорционален количеству мостов и коммутаторов, установленных в сети.
Маршрутизаторы трафик алгоритма SpanningTree не передают, ограничивая топологию покрывающего дерева одной сетью.