
- •1. Введение
- •1.1. Основные задачи оптимизации локальных сетей
- •1.2. Критерии эффективности работы сети
- •1.2.1. Время реакции
- •1.2.2. Пропускная способность
- •1.2.3. Показатели надежности и отказоустойчивости
- •2. Параметры оптимизации транспортной подсистемы
- •2.1. Влияние на производительность сети типа коммуникационного протокола и его параметров
- •2.1.1. Номинальная и эффективная пропускная способность протокола
- •2.1.2. Влияние на производительность алгоритма доступа к разделяемой среде и коэффициента использования
- •2.1.3. Влияние размера кадра и пакета на производительность сети
- •2.1.4.Назначение максимального размера кадра в гетерогенной сети
- •2.1.5. Время жизни пакета
- •2.1.6. Параметры квитирования
- •2.1.7. Сравнение сетевых технологий по производительности: Ethernet, TokenRing, fddi, 100vg-AnyLan, FastEthernet, atm
- •2.1.8. Сравнение протоколов ip, ipx и NetBios по производительности
- •2.2. Влияние широковещательного служебного трафика на производительность сети
- •2.2.1. Назначение широковещательного трафика
- •2.2.2. Поддержка широковещательного трафика на канальном уровне
- •2.2.3. Широковещательный шторм
- •2.2.4. Поддержка широковещательного трафика на сетевом уровне
- •2.2.5. Виды широковещательного трафика
- •2.2.5.1. Широковещательный трафик сетей NetWare
- •2.2.5.2. Широковещательный трафик сетей tcp/ip
- •2.2.5.3. Широковещательный трафик сетей NetBios
- •2.2.5.4. Широковещательный трафик мостов и коммутаторов, поддерживающих алгоритм SpanningTree
- •2.2.5.5. Ограничение уровня широковещательного трафика в составных сетях с помощью техники спуфинга
- •2.3. Влияние топологии связей и производительности коммуникационных устройств на пропускную способность сети
- •2.3.1. Разделяемая среда передачи как причина снижения производительности сети
- •2.3.2. Повышение производительности путем сегментации сети мостами и коммутаторами
- •2.3.2.1. Разделение общей среды с помощью локальных мостов
- •2.3.2.2. Требования к пропускной способности моста
- •2.3.2.3. Сегментация сетей с помощью коммутаторов
- •2.3.2.4. Оценка необходимой общей производительности коммутатора
- •2.3.3. Влияние маршрутизаторов на производительность сети
- •2.3.4. Как интерпретировать результаты тестирования мостов, коммутаторов и маршрутизаторов
- •2.4. Типичные ошибочные ситуации: влияние на производительность и диагностика
- •2.4.1. Типичные ошибки в кадрах
- •2.4.1.1. Ошибки в кадрах, связанные с коллизиями
- •2.4.1.2. Диагностика коллизий
- •2.4.1.3. Ошибки кадров Ethernet, связанные с длиной и неправильной контрольной суммой
- •2.4.1.4. Ошибки кадров Ethernet в стандарте rmon
- •2.4.2. Типичные ошибки при работе протоколов
- •2.4.2.1. Несоответствие форматов кадров Ethernet
- •2.4.2.2. Потери пакетов и квитанций
- •2.4.2.3. Несоответствие разных способов маршрутизации в составной сети
- •2.4.2.4. Несуществующий адрес и дублирование адресов
- •2.4.2.5. Превышение значений тайм-аута и несогласованные значения тайм-аутов
- •2.5. Настройка параметров аппаратных и программных средств конечных узлов
- •2.5.1. Оптимизация операционных систем
- •2.5.1.1. Критерии оптимизации ос
- •2.5.1.2. Понятие "узкое место"
- •2.5.2. Процедуры оптимизации WindowsNt с помощью утилиты PerformanceMonitor
- •2.5.2.1. Характеристика PerformanceMonitor
- •2.5.2.2. Наблюдение за потреблением ресурсов процессора, дисков и памяти
- •2.5.2.3. Оптимизация сетевого оборудования
- •2.5.2.4. Оптимизация сервиса рабочей станции
- •2.5.2.5. Оптимизация сервера
- •2.5.2.6. Оптимизация режима работы протокола smb
- •2.5.3. Настройка подсистемы ввода-вывода рабочих станций и серверов
- •2.5.3.1. Оптимизация дискового кэша
- •2.5.3.2. Использование raid-массивов для повышения производительности
- •3. Инструменты мониторинга и анализа сети
- •3.1. Классификация средств мониторинга и анализа
- •3.1.1. Системы управления
- •3.1.2. Встроенные средства мониторинга и анализа сетей
- •3.1.2.1. Агенты snmp
- •3.1.2.2. Агенты rmon
- •3.1.3. Анализаторы протоколов
- •3.1.4. Оборудование для диагностики и сертификации кабельных систем
- •3.1.4.1. Основные электромагнитные характеристики кабельных систем
- •3.1.4.2. Сетевые анализаторы
- •3.1.4.3. Кабельные сканеры
- •3.1.4.4. Тестеры
- •3.2. Продукты для мониторинга и анализа
- •3.2.1. Обзор популярных систем управления: hpOpenView, SunSoftSolstice, CabletronSpectrum, ibmNetView
- •3.2.2. Система управления сетями Optivity
- •3.2.2.1. Динамическое обнаружение конфигурации сети
- •3.2.2.2. Программное конфигурирование сети
- •3.2.2.3. Интегрированное управление маршрутизаторами
- •3.2.2.4. Анализ и управление производительностью на основе стандарта rmon
- •3.2.2.5. Упреждающий анализ ошибок и проблем
- •3.2.2.6. Управление устройствами в реальном масштабе времени
- •3.2.2.7. Дополнительные управляющие средства и утилиты
- •3.2.3. Технические характеристики популярных анализаторов протоколов
- •3.2.4. Продукты мониторинга и анализа сетей компании NetworkGeneral
- •3.2.4.1. Foundation Agent, Foundation Probe, Foundation Manager
- •3.2.4.2. Семействопродуктов Distributed Sniffer System
- •3.2.4.3. Портативные анализаторы
- •3.2.4.4. Дополнительные продукты
- •3.2.5. Анализатор протоколов laNalyser компании Novell
- •3.2.6. Продукты компании Microtest
- •3.2.6.1. Многофункциональное устройство Compas компании Microtest
- •3.2.6.2. Кабельные сканеры компании Microtest
- •3.2.7. Средства мониторинга и анализа компании Fluke
- •3.2.7.1. Особенности 68x Enterprise lanMeter
- •3.2.7.2. Функциональные возможности
- •3.2.7.3. Средства анализа протоколов стека NovellNetWare
- •3.2.7.4. Средства анализа протоколов стекаTcp/ip
- •3.2.7.5. Дополнительные функции анализа стека tcp/ip
- •3.2.7.6. Средства анализа протокола NetBios
- •3.2.7.7. Функции проверки аппаратуры и кабелей
- •4. Использование моделирования для оптимизации производительности сети
- •4.1. Методы аналитического, имитационного и натурного моделирования
- •4.2. Модели теории массового обслуживания
- •4.3. Специализированные системы имитационного моделирования вычислительных сетей
- •4.4. Система имитационного моделирования comnet компании caciProducts
- •4.4.1. ComnetBaseliner
- •4.4.2. Comnetiii
- •4.4.2.1. Общая характеристика
- •4.4.2.2. Типы узлов
- •4.4.2.3. Каналы связи и глобальные сети
- •4.4.2.4. Рабочая нагрузка
- •4.4.2.5. Протоколы
- •4.4.2.6. Представление результатов
- •4.4.3. ComnetPredictor
- •4.5. Построение пилотных проектов проектируемых сетей
2.2.3. Широковещательный шторм
Обычно протоколы проектируются таким образом, что уровень широковещательного трафика составляет небольшую долю общей пропускной способности сети. Считается, что нормальный уровень широковещательного трафика не должен превышать 8% - 10% пропускной способности сети. Однако, уже при достижении порога в 5% считается целесообразным провести анализ узлов, которые генерируют наибольщую долю широковещательного трафика - возможно, они нуждаются в реконфигурации.
Каждый протокол-источник широковещательных пакетов чаще всего порождает широковещательный трафик постоянной интенсивности, так как посылает в сеть пакеты фиксированного размера через определенные промежутки времени. Например, протокол SAP объявляет о существовании конкретного файл- или принт- сервиса каждые 60 секунд с помощью широковещательного сообщения фиксированного размера. Можно привести пример источника, порождающего широковещательный трафик переменной интенсивности. Таким источником является протокол обмена маршрутной информации RIP, который раз в 30 или 60 секунд рассылает по сети содержимое таблицы маршрутизации, а так как эта таблица может иметь переменный размер, то и интенсивность трафика, создаваемого протоколом RIP, может изменяться.
Общая интенсивность широковещательного трафика в сети будет определяться двумя факторами - количеством источников такого трафика и средней интенсивностью каждого источника. Протоколы локальных сетей разрабатывались в начале 80-х годов в расчете на сравнительно небольшое число компьютеров, генерирующих широковещательный трафик, а также с учетом большого запаса пропускной способности каналов локальных сетей (10 Мб/c) по сравнению с потребностями файлового сервиса миникомпьютеров и настольных компьютеров того времени. Поэтому стеки протоколов, которые проектировались исключительно для применения в локальных сетях - NovellNetWareIPX/SPX и стек NetBIOS/SMB компаний IBM и Microsoft - широко пользовались широковещательными рассылками для создания максимума удобств для пользователей, которым не нужно было запоминать имена и адреса серверов.
Стек TCP/IP проектировался в расчете на работу в любых условиях - как в локальных сетях, так и в глобальных сетях с низкоскоростными каналами. Поэтому стек TCP/IP гораздо реже пользуется широковещательными сообщениями - в основном только тогда, когда это крайне необходимо. Это гарантирует стеку TCP/IP приемлемый уровень широковещательности даже на низкоскоростных каналах, в то время как в сетях NetWare уровень широковещательности на глобальных каналах может достигать нежелательной цифры в 20%.
Превышение широковещательным трафиком уровня более 20% называется широковещательным штормом (bradcaststorm). Это явление крайне нежелательно, так как приводит к возрастанию коэффициента использования сети, а, следовательно, и к резкому увеличению времени ожидания доступа.
2.2.4. Поддержка широковещательного трафика на сетевом уровне
Как уже было сказано, мосты и коммутаторы не изолируют сегменты сетей, подключенных к портам, от широковещательного трафика канальных протоколов. Это может создавать проблемы для больших сетей, так как широковещательный шторм будет "затапливать" всю сеть и блокировать нормальную работу узлов. Надежной преградой на пути широковещательного шторма являются маршрутизаторы.
Принципы работы маршрутизатора не требуют от него обязательной передачи кадров с широковещательным адресом через все порты. Маршрутизатор при принятии решения о продвижении кадра руководствуется информацией заголовка не канального уровня, а сетевого. Поэтому широковещательные адреса канального уровня маршрутизаторами просто игнорируются. На сетевом уровне также существует понятие широковещательного адреса, но этот адрес имеет ограниченное действие - пакеты с этим адресом должны быть доставлены всем узлам, но только в пределах одной сети. В силу этого такие адреса называются ограниченными широковещательными адресами (limitedbroadcast). По таким правилам работают наиболее популярные протоколы сетевого уровня IP и IPX.
Однако, для нормальной работы сети часто оказывается желательной возможность широковещательной передачи пакетов некоторого типа в пределах всей составной сети. Например, пакеты протокола объявления сервисов SAP в сетях NetWare требуется передавать и между сетями, соединенными маршрутизаторами, для того, чтобы клиенты могли обращаться к серверам, находящимся в других сетях. Именно так работает программное обеспечение маршрутизации, реализованное компанией Novell в ОС NetWare. Для поддержания этого свойства практически все производители аппаратных маршрутизаторов также обеспечивают широковещательную передачу трафика SAP.
Подобные исключения делаются не только для протокола SAP, но и для многих других служебных протоколов, выполняющих функции автоматического поиска сервисов в сети или же другие не менее полезные функции, упрощающие работу сети.
Ниже описаны наиболее популярные в локальных сетях протоколы, порождающие широковещательный трафик.