
- •Первый закон термодинамики. Термодинамические функции состояния. Внутренняя энергия и энтальпия. Энтальпия образования химического состояния.
- •Термохимия. Закон Гессе и следствие из него.
- •3) Второй закон термодинамики. Энтропия, как мера неупорядоченности системы.
- •4) Энергия Гиббса как критерий вероятности самопроизвольного протекания процесса. Энтальпийная и энтропийная составляющие энергии Гиббса.
- •5) Химическое равновесие. Константа равновесия и её связь с энергией Гиббса.
- •6) Смещение химического равновесия. Принцип Ле-Шателье.
- •7) Растворы неэлектролитов. Осмос, осмотическое давление. Закон Вант-Гоффа.
- •8) Растворы неэлектролитов. Закон Рауля и следствия из него.
- •9)Электролиты.
- •10) Константа и степень диссоциации слабых электролитов. Закон разбавления Оствальда. Ступенчатая диссоциация.
- •11)Свойства растворов сильных электролитов. Ионная сила раствора, коэффициенты активности и активности ионов. Уравнение Деббая-Гюккеля.
- •Растворы сильных электролитов
- •11)Свойства растворов сильных электролитов. Ионная сила раствора, коэффициенты активности и активности ионов. Уравнение Деббая-Гюккеля.
- •12) Диссоциация воды. Константа диссоциации. Ионное произведение воды. Водородный и гидроксильный показатели.
- •13) Гидролиз солей. Три случая гидролиза солей. Константа и степень гидролиза.
- •14 Окислители и восстановители. Типы окислительно-восстановительных реакций.
- •15)Электрохимические процессы. Окислительно-восстановительные потенциалы. Уравнение Эрнста.
- •16) Направление протекания окислительно-восстановительных реакций. Вычисление константы равновесия окислительно-восстановительных реакций.
- •17) Превращение энергии окислительно-восстановительной реакции в электрическую. Гальванический элемент. Концентрационный гальванический элемент.
- •18) Обратимые гальванические элементы. Аккомуляторы.
- •19) Коррозия металлов. Виды коррозии: химическая и электрохимическая. Механизм протекания электрохимической коррозии.
- •20) Коррозия металлов. Основные окислители при электрохимической коррозии. Коррозия в кислой, нейтральной и щелочной средах.
- •21) Способы защиты металлов от коррозии: защитные покрытия, использование ингибиторов, электрохимическая защита от коррозии. Процессы, протекающие на электродах при коррозийном разрушении металлов.
11)Свойства растворов сильных электролитов. Ионная сила раствора, коэффициенты активности и активности ионов. Уравнение Деббая-Гюккеля.
Законы Рауля и принцип Вант-Гоффа не выполняются для растворов (даже бесконечно разбавленных), которые проводят электрический ток – растворов электролитов. Обобщая экспериментальные данные, Я.Г. Вант-Гофф пришел к выводу, что растворы электролитов всегда ведут себя так, будто они содержат больше частиц растворенного вещества, чем следует из аналитической концентрации: повышение температуры кипения, понижение температуры замерзания, осмотическое давление для них всегда больше, чем вычисленные. Для учета этих отклонений Вант-Гофф внес в уравнение (III.16) для растворов электролитов поправку – изотонический коэффициент i:
Растворы сильных электролитов
Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено вправо:
а потому константа равновесия (диссоциации) оказывается величиной неопределенной. Снижение электропроводности при увеличении концентрации сильного электролита обусловлено электростатическим взаимодействием ионов.
Дебай и Хюккель, предложив модель, которая легла в основу теории сильных электролитов, постулировали:
Электролит полностью диссоциирует, но в сравнительно разбавленных растворах (C = 0,01 моль·л–1).
Каждый ион окружен оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой.
Очевидно, что при электростатическом взаимодействии ионов противоположных знаков необходимо учитывать влияние ионной атмосферы. При движении катиона в электростатическом поле ионная атмосфера деформируется; она сгущается перед ним и разрежается позади него. Эта асимметрия ионной атмосферы оказывает тем более тормозящее действие движению катиона, чем выше концентрация электролитов и чем больше заряд ионов. В этих системах само понятие концентрации становится неоднозначиным и должно заменяться активностью. Для бинарного одно-однозарядного электролита KatAn → Kat+ + An+ активности катиона (a+) и аниона (a–) соответственно равны
где C+ и C– – аналитические концентрации соответственно катиона и аниона, γ+ и γ– – их коэффициенты активности.
Определить активности каждого иона в отдельности невозможно, поэтому для одно-однозарядных электролитов пользуются средними геометрическими значений активностей и коэффициентов активностей:
Коэффициент активности по Дебаю–Хюккелю зависит по крайней мере от температуры, диэлектрической проницаемости растворителя (ε) и ионной силы (I); последняя служит мерой интенсивности электрического поля, создаваемого ионами в растворе.
Для данного электролита ионная сила выражается уравнением Дебая–Хюккеля:
Ионная сила в свою очередь равна
Здесь C – аналитическая концентрация, z – заряд катиона или аниона. Для одно-однозарядного электролита ионная сила совпадает с концентрацией. Таким образом, NaCl и Na2SO4 при одинаковых концентрациях будут иметь разные ионные силы. Сопоставление свойств растворов сильных электролитов можно проводить только тогда, когда ионные силы одинаковы; даже небольшие примеси резко изменяют свойства электролита.
На рис. 6.6 сопоставляются вычисленные и экспериментальные значения lg γ± при различных ионных силах. Из него видно, что уравнение Дебая–Хюккеля выполняется только для разбавленных растворов.
Рисунок 6.6
Зависимость
Пунктирные прямые рассчитаны по уравнению Дебая–Хюккеля. Знание коэффициентов активностей позволяет оценить реальные свойства сильных электролитов.
Активность компонентов раствора — эффективная (кажущаяся) концентрация компонентов с учетом различных взаимодействий между ними в растворе, то есть с учетом отклонения поведения системы от модели идеального раствора.