
- •Введение.
- •Определение трудоемкости работ, фонда времени на технические обслуживания (т.О.) и текущие ремонты (т.Р.) при заданном объеме электрооборудования в хозяйстве .
- •Расчет штатов для выполнения работ по т.О. И т.Р. В соответствии с нормативами времени и объемом работ.
- •Составление годовых графиков т.О. И т.Р. В соответствии с объемами регламентированных работ, периодами эксплуатации электрооборудования по отраслям, а также штатами электротехнического персонала .
- •Преимущества проводов марки сип
- •Недостатки проводов марки сип
- •Вопрос №2 Как проверить соответствие выбранного защитного автомата и сечения проводов внутренней электропроводки?
- •Вопрос №3 Виды повреждений силовых трансформаторов и способы их обнаружения
- •Список использованной литературы
Вопрос №2 Как проверить соответствие выбранного защитного автомата и сечения проводов внутренней электропроводки?
Выбор сечения кабелей и проводов является обязательным и очень важным пунктом при монтаже и проектировании схемы любой электрической установки.
Для правильного выбора сечения силового провода необходимо учитывать величину максимально потребляемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/U.
Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки (открытой проводки) на сечение провода:
- для медного провода 10 ампер на миллиметр квадратный,
- для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.
При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8.
Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 мм2 из расчета достаточной механической прочности.
Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных.
Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях.
Вопрос №3 Виды повреждений силовых трансформаторов и способы их обнаружения
Трансформаторы входят в состав основного оборудования электростанций, повышающих, понижающих и распределительных подстанций, различного вида преобразовательных устройств и т.д. Различное назначение, нередко связанное с различиями в конструкции, разнообразные условия работы и другие особенности требуют различного подхода к эксплуатации трансформаторов.
Наиболее распространенным видом повреждения силовых трансформаторов напряжением 110 кВ и более является повреждение высоковольтных вводов. В настоящее время эксплуатируются негерметичные и герметичные
маслонаполненные вводы, а также вводы с твердой изоляцией. Наиболее слабым узлом негерметичных вводов является система защиты масла от воздействия влаги с помощью масляного гидрозатвора и силикагелевого воздухоосушителя. При длительной эксплуатации, особенно в случае несвоевременной замены силакагеля, масло увлажняется, ухудшаются его изоляционные характеристики, в результате чего могут возникнуть частичные разряды в масле. В дальнейшем по поверхности бумажной изоляции начинает образовываться так называемый "ползущий" разряд: от одной или нескольких исходных точек поврежденной поверхности изоляции как бы расползаются прожоги, образуя сложный рисунок с ослабленной поверхностной изоляцией. При приближении "ползущего" разряда к заземленной части происходит пробой изоляции с возникновением короткого замыкания. Пробой при значительном ухудшении изоляционных характеристик может возникнуть и без образования ползущего разряда. Аналогичное повреждение может произойти и в том случае, если при ремонте ввода была плохо просушена бумажная изоляция.
Герметичные вводы менее трудоемки в эксплуатации и более надежны, чем негерметичные. В первые годы эксплуатации наблюдались повреждения вводов из-за образования алюминиевой пыли в сильфонах баков давления. На устранение этого явления были направлены мероприятия, предусмотренные противоаварийным циркуляром Главтехуправления Минэнерго СССР № Ц-11-83 (Э) "О повышении надежности герметичных вводов 220—750 кВ с выносными баками давления" и другими директивными материалами. Выполнение этих мероприятий не освобождает от необходимости продолжать контролировать характеристики изоляции, сравнивая результаты измерений с данными, полученными непосредственно после замены выносных баков давления. На герметичные вводы, изготовленные после 1978 г., мероприятия циркуляра не распространяются.
Как в негерметичных, так и в герметичных вводах может иметь место нарушение герметичности в зоне крепления верхней контактной шпильки. Нарушение может возникнуть вследствие неправильной сборки узла, превышения создаваемого гибким спуском радиального усилия над расчетным значением и т.д. Этот узел находится в самой верхней точке трансформатора, и избыточное давление масла в нем, особенно в холодное время (т.е. при минимальном уровне масла в баке-расширителе), близко к нулю. При неплотностях влага может из атмосферы просачиваться в масло, создавая увлажнение изоляции трансформатора.
Другим распространенным видом повреждения трансформаторов является повреждение устройств регулирования напряжения под нагрузкой (РПН). Нарушения в контактной системе избирателя могут возникать от неправильной регулировки контактов (недостаточное или чрезмерное нажатие, перекосы и др.), вследствие образования на контактах пленки окисла при редких переключениях и несвоевременно выполненных прокрутках устройства, при нарушениях в кинематической схеме.
Контактор устройства РПН может повреждаться при неправильной регулировке его контактной системы и кинематической схемы, а также вследствие несвоевременной замены трансформаторного масла. Время между срабатыванием вспомогательных и дугогасящих контактов контактора при переключении исчисляется десятыми долями секунды. Если масло в контакторе поте ряло свои дугогасящие свойства, процесс гашения дуги затягивается и соседние отпайки (ответвления) регулировочной обмотки трансформатора могут оказаться замкнутыми не через дугогасящий резистор, а через электрическую дугу, что приводит к тяжелым авариям с деформацией обмоток трансформатора. К повреждениям устройств РПН могут приводить увлажнение и загрязнение изолирующих деталей, изготовление этих деталей из материалов, не предусмотренных технической документацией, ослабление креплений и т.д. Нередки отказы вследствие нарушений в работе приводов.
К наиболее тяжелым последствиям приводят повреждения обмоток и главной изоляции трансформаторов. Плохо просушенные электрокартон или витковая бумажная изоляция, грязное или увлажненное трансформаторное масло вызывают местное ослабление твердой изоляции с возникновением ползущего разряда или без него с последующим пробоем. К нарушению работы твердой изоляции приводит также несоблюдение размеров (между листами электрокартона и др.), разбухание слабо намотанной изоляции, нарушения в работе системы охлаждения, чрезмерные перегрузки трансформатора по току и напряжению и др. В связи с разнообразием причин и тяжелыми последствиями от повреждений витковой и главной изоляции своевременному выявлению этого вида нарушений в работе трансформаторов уделяется наибольшее внимание.
В связи с постоянным ростом энергетических мощностей растут мощности короткого замыкания (КЗ). Вследствие этого роста, а также при ослабленной запрессовке обмоток электродинамическая стойкость обмоток к воздействию внешних КЗ (называемых также "сквозными" КЗ) может оказаться недостаточной. В результате при внешних КЗ обмотка может деформироваться или разрушиться, хотя ее изоляция перед повреждением находилась в хорошем состоянии.
Повреждения в активной стали трансформатора приводят к менее тяжелым последствиям и связаны, как правило, с образованием короткозамкнутых контуров внутри бака. Контур может образоваться как внутри пакета магнитопровода, так и через какую-либо конструктивную металлическую деталь, например, через прессующее кольцо и элементы заземления магнитопровода.
При современных бесшпилечных магнитопроводах короткозамкнутый контур обычно сцеплен не с главным потоком (замыкающимся только по активной стали), а с потоком рассеяния. Короткозамкнутый контур вызывает повышенный местный нагрев (местный перегрев), обычно в местах контак-
тов, ухудшающий свойства трансформаторного масла. Если своевременно не устранить дефект. то может произойти повреждение твердой изоляции трансформатора. И, наконец, существенное влияние на общую работоспособность трансформатора оказывают вспомогательные узлы и устройства. Так, например, повреждение маслонасоса в трансформаторах с системой охлаждения Ц и ДЦ (также НЦ и НДЦ) приводит к попаданию металлических частиц и других примесей в трансформаторное масло и, будучи несвоевременно выявленным, вызывает серьезные аварии. При нарушении резиновых и других уплотнений увлажняется трансформаторное масло. Неисправность стрелочного маслоуказателя приводит к недопустимому снижению или превышению уровня масла и т.д.
Приведенный краткий обзор основных видов повреждений показывает, что в большинстве случаев они развиваются постепенно. Следовательно, если правильно поставить работу по проверке состояния трансформаторов, возникающие дефекты можно выявить до того момента, когда будет превышена какая-то критическая точка.
Вопрос №4 Что такое «внешня характеристика» источника тока и что она отражет? Внешней (вольт-амперной) характеристикой Источника питания называется зависимость напряжения на зажимах источника от силы тока. Источники питания могут иметь следующие внешние характеристики: крутопадающую, пологопадающую. жесткую и возрастающую. Характеристика источников питания для ручной дуговой сварки должна быть крутопадающей, обеспечивающей стабильность горения дуги при неизбежных изменениях ее длины б процессе сварки. Значения длины дуги и напряжения взаимосвязаны: чем больше длина дуги, тем выше напряжение. При одинаковом падении напряжения Д£/’д (изменении длины дуги) сила тока при крутопадающей характеристике изменяется меньше, чем при пологопадающей Для обеспечения устойчивого горения дуги необходимо, чтобы ее вольт-амперные характеристики и соответствующие характеристики источника питания пересекались в одной точке, когда Ua=UnСт. Таким образом, точка А характеризует устойчивое горение дуги. В случае уменьшения силы тока напряжение источника станет больше напряжения дуги (см. рис. 5.2, точка В), и сила тока увеличится до значения, равного его значению в точке А. При увеличении силы тока напряжение источника станет меньше напряжения дуги (см. рис. 5.2, точка С), и сила тока уменьшится до первоначального значения. Следовательно, для устойчивого горения дуги внешние характеристики источников питания должны иметь вполне определенную форм При автоматической сварке под флюсом плавящимся электродом проявляется Эффект саморегулирования, заключающийся в том, что всякое изменение напряжения на дуге вызывает изменение силы тока и скорости плавления электродной проволоки в противоположном направлении, что ведет к восстановлению первоначальной длины дуги и связанного с ней напряжения. Например, при уменьшении длины дуги во время прохождения участка с прихваткой снижается напряжение, что вызывает уменьшение силы тока, рост скорости плавления проволоки и увеличение длины дуги — система приходит в исходное состояние. Падаюшие характеристики могут быть получены, если в цепь с дугой последовательно включить сопротивления — балластные реостаты при сварке на постоянном токе или дроссели (индуктивные сопротивления) при использовании сварочных трансформаторов. Конструкции однопостовых источников питания обеспечивают необходимую вольт-амперную характеристику. Устойчивость процесса сварки тонкой проволокой в защитных газах на автоматах или полуавтоматах с постоянной скоростью подачи электродной проволоки обеспечивается при жесткой либо пологопадающей характеристике источника питания, когда небольшие отклонения длины дуги от заданной будут вести к существенному изменению силы тока и, как следствие, к быстрому восстановлению исходных параметров. Источники питания для автоматической и механизированной сварки под флюсом должны иметь пологопадаюшую характеристику, для сварки в защитных газах — жесткую или пологопадаюшую. Вопрос №5 Назначение заземления и зануления в электроустановках. В каких местах оно должно быть выполнено? Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока. Замыканием на землю называется случайное соединение находящихся под напряжением частей электроустановки с конструктивными частями, не изолированными от земли, или непосредственно с землей. Замыканием на корпус называется случайное соединение находящихся под напряжением частей электроустановки с их конструктивными частями, нормально не находящимися под напряжением. Заземляющим устройством называется совокупность заземлителя и заземляющих проводников. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей. Искусственным заземлителем называется заземлитель, специально выполняемый для целей заземления. Естественным заземлителем называются находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий и сооружений производственного или иного назначения, используемые для целей заземления. Магистралью заземления или зануления называется соответственно заземляющий или нулевой защитный проводник с двумя или более ответвлениями. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем. Вопрос №6 Изобразите схемы подключения трехфазных электросчетчиков в трехпроводных и четырехпроводных сетях
Все электросчетчики включаются по типовым схемам, в которых для правильной работы счетного механизма, в частности, во избежание хищения электроэнергии необходимо соблюдать полярность выводов, а именно: зажимы, подключаемые к источнику питания, так называемые генераторные зажимы с индексом Г, на схеме должны находиться слева, а зажимы, подключаемые к цепи тока нагрузки, так называемые нагрузочные концы с индексом Н, - справа. На рисунке 8 показана типовая схема включения однофазного индукционного счетчика (тип СО).
Рисунок 8. Схема включения индукционного однофазного счетчика типа СО
На рисунке 9 показаны типовые схемы включения индукционных трехпроводных двухэлементных счетчиков активной энергии типов САЗ и САЗУ при непосредственном включении в сеть (рис. 9, а) и при включении в сеть через ТТ и ТН (рис. 9, б). На рис. 10 показаны типовые схемы включения индукционных четырехпроводных трехэлементных счетчиков активной энергии типов СА4 и СА4У при непосредственном включении в сеть (рис. 10, а) и при включении в сеть через ТТ (рис. 10,6).
На рис. 10 видно, что к счетчику подходит 10 концов. Следует обратить внимание на то, что счетчик будет давать правильные показания и в том случае, если вместо 10 к нему подвести 7 концов (рис. 10, а), а именно: исключить три конца, подходящих к обмотке напряжения счетчика, за счет перемычек концов 1-2,4-5, 7-8 и дополнительных перемычек каждой из трех фаз с соответствующими концами И1 ТТ. Однако такое соединение недопустимо с точки зрения электробезопасности, поскольку в этом случае по вторичным цепям ТТ и токовым обмоткам счетчика будет протекать ток первичной силовой цепи, что опасно для обслуживающего персонала, может вывести из строя всю схему вторичной коммутации и повредить прибор. Кроме того, установка указанных перемычек может вызвать дополнительную погрешность в показаниях счетчика.
|
|