Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Т09-раздаточный материал тема 9 (Обмен азота и...doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
790.53 Кб
Скачать

Биосинтез аминокислот

В атмосфере элементарный азот (Ν2) присутствует практически в неограниченном количестве. Прежде чем поступить в круговорот азота, он должен быть восстановлен до NH3 и включен («фиксирован») в аминокислоты.

А. Симбиотическая фиксация азота

Фиксировать атмосферный азот способны лишь немногие виды бактерий и синезеленых водорослей. Они находятся в почве свободно или живут в симбиозе с растениями. Особо важное хозяйственное значение имеет симбиоз между бактериями рода Rhizobium и бобовыми растениями (Fabales), такими, как клевер, бобы или горох. Эти растения очень питательны благодаря высокому содержанию белка.

В симбиозе с бобовыми бактерии живут в корневых клубочках внутри растительных клеток, в так называемых бактероидах. С одной стороны, растение снабжает бактериоды питательными веществами, а с другой, извлекает пользу от фиксированного азота, который поставляет симбионт. Фиксирующим N2 ферментом бактерий является нитрогеназа. Она состоит из двух компонентов: Fe-белка и FeMo-белка. Fe-белок, содержащий [FeS4]-центр служит окислительно-восстановительной системой, которая принимает электроны от ферредоксина и передает их во второй компонент, FeMo-белок. Этот молибденсодержащий белок переносит электроны на N2 и таким образом через различные промежуточные стадии продуцирует NH3. Часть восстановительных эквивалентов переносится в побочной реакции на H+. Поэтому наряду с NH3 всегда образуется водород.

Б. Биосинтез аминокислот: общие сведения

По особенностям биосинтеза протеиногенные аминокислоты подразделяются на пять семейств. Члены каждого семейства имеют общих предшественников, которые образуются в цитратном цикле или при катаболизме углеводов.

В то время как растения и микроорганизмы вполне могут синтезировать все аминокислоты, млекопитающие в ходе эволюции утратили способность к синтезу примерно половины из 20 протеиногенных аминокислот. Поэтому незаменимые аминокислоты должны поступать с пищей. Так, организм высших организмов не способен синтезировать ароматические аминокислоты de novo (тирозин не является незаменимой аминокислотой только потому, что может образоваться из фенилаланина). К незаменимым аминокислотам принадлежат аминокислоты с разветвленной боковой цепью: валин и изолейцин, а также лейцин, треонин, метионин и лизин. П итательная ценность белков решающим образом зависит от содержания незаменимых аминокислот. Растительные белки зачастую бедны лизином или метионином. В то же время животных белки содержат все аминокислоты в сбалансированных соотношениях.

Заменимые аминокислоты (аланин, аспарагиновая и глутаминовая кислоты и их амиды, аспарагин и глутамин) образуются в результате трансаминирования из промежуточных метаболитов — 2-кетокислот. Пролин синтезируется в достаточных количествах из глутамата, а представители серинового семейства (серин, глицин и цистеин) сами являются естественными метаболитами организма животных.

Синтез белка

Генетический код

Большая часть генетической информации, содержащейся в ДНК, кодирует последовательность аминокислот. Процесс экспрессии генетической информации включает транскрипцию «текста», записанного на «языке нуклеиновой кислоты», в текст, записанный на «языке белков». Таково происхождение термина трансляция (дословно — перевод), используемого для обозначения процесса биосинтеза белков. Правила, которым следует трансляция, называют генетическим кодом.

Поскольку в биосинтезе участвуют 20 аминокислот, называемых протеиногенными, «язык» нуклеиновых кислот должен содержать по крайней мере 20 слов (кодонов) Однако в аминокислотном «алфавите» имеется только четыре «буквы» (А, Г, Ц и У или Т [или в англ. транскрипции: A, G, С и U или Т*]), так что для получения 20 различных слов каждое должно состоять по крайней мере из трех букв. Кодоны действительно включают три азотистых основания (триплет нуклеотидов). На схеме 1 представлен стандартный код ДНК (последовательность триплетов в некодирующей цепи), изображенный в виде круга. Схема читается от центра наружу, так что, например, триплет CAT кодирует аминокислоту гистидин. ДНК-кодоны идентичны таковым в мРНК (mRNA), за исключением того, что в мРНК вместо тимина (Т), характерного для ДНК, стоит урациял (U).

В качестве примера прочтения кода на схеме 2 показаны короткие участки нормального и мутантного гена β-глобина вместе с соответствующими последовательностями мРНК и аминокислот. Здесь показаны относительно часто встречающиеся точковые мутации, в результате которых остаток глутаминовой кислоты в положении 6 β-цепи заменен на валин. Такой мутантный гемоглобин в дезоксиформе склонен к агрегации, что вызывает деформацию эритроцитов и уменьшает эффективность транспорта кислорода (серповидноклеточная анемия).

В триплетном генетическом коде для 20 аминокислот потенциально существует 43 = 64 кодона. Таким образом, большинство аминокислот записывается несколькими кодонами, т. е. генетический код является вырожденным. Кроме того, имеются три триплета, которые обозначают конец транскрипции (стоп-кодоны). Еще один специальный кодон, стартовый (инициирующий) кодон, маркирует начало трансляции. Генетический код, показанный на рисунке, является почти универсальным. Этому стандарту не полностью соответствуют только митохондрии и некоторые микроорганизмы.