
- •Введение в теорию переноса и физику защиты от ионизирующих излучений
- •Содержание
- •Предисловие
- •Введение
- •Глава 1. Виды ионизирующих излучений
- •2.1.2. Токовые характеристики полей излучений.
- •Глава 3. Взаимодействие излучений с веществом
- •§ 3.1. Типы взаимодействий излучений с веществом.
- •3.1.1. Поглощение.
- •3.1.2. Ионизация и возбуждение.
- •3.1.3. Рассеяние.
- •3.1.4. Ядерные реакции.
- •§ 3.2. Эффективные поперечные сечения взаимодействия.
- •3.2.1.Микроскопические и макроскопические эффективные поперечные сечения взаимодействия.
- •3.2.2. Дифференциальные и интегральные эффективные поперечные сечения взаимодействия
- •§ 3.3. Взаимодействия фотонов с веществом.
- •5. Образование фотонейтронов.
- •3.3.1. Фотоэлектрическое поглощение.
- •3.3.2. Комптоновское рассеяние.
- •3.3.3.Процесс образования электрон-позитронных пар.
- •3.3.4. Характеристическое излучение.
- •3.3.5. Когерентное рассеяние.
- •3.3.6.Аннигиляционное излучение.
- •3.3.7. Тормозное излучение.
- •3.3.8. Образование фотонейтронов.
- •3.3.9. Макроскопичекие эффективные поперечные сечения взаимодействия фотонов с веществом.
- •§ 3.4. Взаимодействие нейтронов с веществом
- •3.4.1. Качественная картина взаимодействия нейтронов.
- •3.4.2. Формула Брейта-Вигнера
- •3.4.3. Радиационный захват.
- •3.4.4. Упругое рассеяние.
- •3.4.5. Неупругое рассеяние.
- •3.4.6. Кинематика рассеяния нейтронов
- •3.4.7. Специфика рассеяния тепловых нейтронов
- •3.4.8. Дифференциальные микроскопические поперечные сечения рассеяния
- •3.4.9. Ядерные реакции.
- •3.4.10. Полные эффективные микроскопические поперечные сечения взаимодействия нейтронов с веществом.
- •§ 3.5. Взаимодействия заряженных частиц с веществом.
- •3.5.1.Взаимодействия тяжелых заряженных частиц с веществом.
- •3.5.2. Взаимодействия электронов с веществом.
- •Глава 4. Дозовые характеристики полей излучений.
- •§ 4.1. Основные базисные дозовые характеристики полей излучений
- •4.1.1 Поглощенная доза
- •4.1.2.Керма.
- •4.1.3. Эквивалентная доза.
- •4.1.4. Эффективная доза.
- •4.1.5. Ожидаемая эффективная (эквивалентная) доза.
- •4.1.6. Доза эффективная (эквивалентная) годовая
- •4.1.7. Коллективная эффективная доза
- •4.1.8.Предотвращаемая эффективная доза
- •§ 4.2. Фантомные дозовые характеристики полей излучений
- •4.2.1. Показатель эквивалентной дозы.
- •4.2.2. Амбиентная эквивалентная доза.
- •§ 4.3. Связь между дифференциальными и дозовыми характеристиками полей излучений при внешнем облучении.
- •4.3.1. Фотонное излучение.
- •4.3.2.Заряженные частицы.
- •4.3.3.Нейтроны.
- •§ 4.4. Удельные дозиметрические характеристики полей излучений при внешнем облучении.
- •§ 4.5. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей излучений при внутреннем облучении.
- •4.5.1. Однокамерная модель оценки дозы.
- •4.5.2. Многокамерные модели оценки дозы.
- •4.5.3. Модель «удельной активности».
- •§ 4.6. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей фотонов при внешнем облучении.
- •Глава 5. Характеристики источников ионизирующих излучений
- •§ 5.1. Радионуклиды, как источники излучений
- •5.1.1. Активность и постоянная распада радионуклида
- •5.1.2. Схемы радиоактивных превращений
- •§ 5.2. Радионуклиды, как источники отдельных видов излучений.
- •5.2.1. Источники α-частиц.
- •5.2.2. Источники β-частиц и электронов.
- •Электронный (β-- распад):
- •5.2.3. Источники γ-излучения.
- •5.2.4. Источники нейтронов.
- •Основные характеристики (α,n)-источников нейтронов.
- •239Pu - α –Be (справа) источниками нейтронов.
- •Характеристики (γ,n)-источников нейтронов.
- •§ 5.3. Дозовые характеристики радионуклидов, как источников γ- излучения.
- •5.3.1. Керма – постоянные радионуклидов.
- •5.3.2. Керма – эквивалент радионуклидов.
- •§ 5.4. Установки для получения излучений.
- •5.4.1.Источники заряженных частиц.
- •5.4.2. Источники фотонного излучения.
- •5.4.3. Источники нейтронного излучения.
- •Значения констант формулы 5.28.
- •Доля запаздывающих нейтронов деления на 1 деление
- •Глава 6. Основные принципы нормирования и нормы радиационной безопасности.
- •§ 6.1. Биологические эффекты радиационного воздействия.
- •6.1.1. Детерминированные соматические поражения.
- •6.1.2. Стохастические соматические и генетические поражения.
- •6.1.3. Действие радиации на окружающую среду.
- •§ 6.2. Уровни фонового облучения человека.
- •6.2.1. Уровни естественного радиационного фона.
- •Концентрация естественных радионуклидов в почвах и создаваемые ими мощности поглощенной дозы на поверхности .
- •Среднемировые данные по рациону питания и скорости дыхания
- •Среднегодовые эффективные дозы радиации от различных источников естественного фона, мкЗв/год
- •6.2.2. Технологически повышенный естественный радиационный фон.
- •Концентрации естественных радионуклидов в различных строительных материалах, Бк/г и мощность поглощенной дозы в воздухе, нГр/ч х10
- •6.2.3. Искусственный радиационный фон.
- •Типичные значения эффективных доз пациентов при различных процедурах, мЗв
- •6.2.3. Дозовые нагрузки от всех источников радиационного фона.
- •§ 6.3. Принципы нормирования дозовых пределов.
- •6.3.1.Основные принципы нормирования радиационного фактора воздействия.
- •6.3.2.Концепция приемлемого риска.
- •1) Концепция нулевого риска;
- •2) Беспороговая концепция;
- •3) Концепция приемлемого риска.
- •Классификация источников риска
- •6.3.3. Экономические подходы к нормированию
- •§ 6.4 . Нормы радиационной безопасности. Основные дозовые пределы.
- •6.4.1. Пределы доз.
- •Коэффициенты риска для разных категорий облучаемых лиц, х10-5 (чел-мЗв)
- •6.4.2.Требования по ограничению облучения в условиях радиационной аварии
- •Критерии для принятия неотложных решений в начальном периоде радиационной аварии
- •6.4.3. Принципы расчетов предельно допустимых уровней и потоков ионизирующих излучений.
- •Параметры, используемые в нрб-99/2009 для оценки доз излучения.
- •Среднегодовые допустимые плотности потоков излучений для лиц из персонала при облучении, см-2 с-1
- •Значенияудельных дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала.
- •6.4.4. Комбинированное воздействие излучений.
- •Рекомендуемая литература
- •Используемые константы и обозначения.
5.4.2. Источники фотонного излучения.
Электронные ускорители и рентгеновские установки. При прохождении заряженных частиц в электромагнитном поле с ускорением или замедлением энергия частицы теряется в виде тормозного фотонного излучения. На этом принципе основано получение пучков фотонного излучения при торможении электронов, испущенных катодом рентгеновской трубки и ускоренных электрическим полем между катодом и анодом, на мишени.
На рис.5.10 приведена примитивная схема рентгеновского аппарата, демонстрирующая сказанное.
Рис.5.10. Примитивная схема рентгеновского аппарата.
Мощность такого источника фотонов определяется током электронов, напряжением между катодом и анодом, материалом и толщиной мишени и находится в диапазоне от 105 до 1014 с-1. Приближенно мощность источника может быть выражена формулой:
J ~ i Z V2 (5.34),
в которой i – ток на трубке, Z - атомный номер материала мишени, V – напряжение на трубке.
Энергетическое распределение испускаемых мишенью фотонов является непрерывным в диапазоне от 0 до энергии ускоренных электронов и имеет вид, подобный приведенному на рис.5.11.
Рис.5.11. Энергетические спектры рентгеновского излучения из вольфрамовой мишени при различных напряжениях на трубке.
На фоне непрерывного спектра тормозного излучения, характеризуемого максимальной энергией фотонов, равной энергии ускоренных электронов, четко выделяются моноэнергетические кванты характеристического излучения материала мишени, которые по амплитуде превышают амплитуду тормозного излучения, а положение их по энергии зависит от материала мишени.
Принципиальная разница между линейным ускорителем электронов и рентгеновской установкой состоит лишь в энергии ускоренных электронов, которая в рентгеновских аппаратах обычно не превышает 400 кэВ, а на ускорителях достигает десятков МэВ. Это проявляется и в спектре тормозного излучения, примерный вид которого для электронов показан на рис.5.7. Для практики расчетов защиты от тормозного излучения ускорителей электронов часто показанное спектральное распределение заменяют моноэнергетическим с эффективной энергией равной 2/3Ее при энергии ускоренных электронов Ее <1,7 МэВ; 1/2 Ее при Ее в диапазоне 1,7 – 10 МэВ, 5 МэВ при Ее =10-15 МэВ и 1/3 Ее при Ее >15 МэВ.
Помимо разницы в спектрах фотонного излучения этих установок наблюдается и разница в угловом распределении испускаемых фотонов (рис.5.12).
Рис.5.12. Угловое распределение фотонов, вылетающих с мишени ускорителя при разных ускоряющих напряжениях
На ускорителях фотоны, как правило, летят в направлении первичного пучка электронов, на рентгеновском аппарате при низких напряжениях на трубке в направлении перпендикулярном первичному пучку.
Следует отметить еще одну особенность электронных ускорителей на высокие энергии. Если энергия тормозного фотонного излучения превышает энергию связи нейтронов в ядре материала мишени или конструкционных элементов, то возникает по реакции (γ,n) мощное сопутствующее нейтронное излучение, которое порой определяет радиационную обстановку вблизи ускорителя.
Реактор, как источник фотонов. Источники фотонного излучения на ядерном реакторе различаются как по природе их образования, так и по характеристикам испускаемого излучения. Можно выделить следующие основные группы фотонов реактора: мгновенное гамма-излучение, гамма-излучение продуктов деления, захватное гамма-излучение, гамма-излучение неупругого рассеяния нейтронов и активационное гамма-излучение.
Мгновенное гамма-излучение представляет собой гамма-кванты, испускаемые в процессе деления тяжелого ядра и распаде короткоживущих продуктов деления, т.е фотонное излучение испускаемое за время t<5·10-7с после реакции деления. Суммарная энергия этого гамма-излучения составляет примерно 7 МэВ/деление, спектр испускаемых квантов спадающий с ростом энергии и имеет непрерывное распределение по энергии до энергии примерно 7,5 МэВ со средней энергией фотонов 2,5 МэВ. Это излучение образуется в активной зоне реактора непосредственно во время его работы.
Гамма-излучение продуктов деления ядерного топлива обусловлено гамма-излучением радионуклидов, накапливаемых в топливе в процессе работы реактора как непосредственно в процессе деления, так и за счет радиоактивного распада этих продуктов и захвата нейтронов образовавшимися продуктами деления. В целом образуется около 1000 радионуклидов - продуктов деления, каждый из которых имеет спектр дискретных энергетических линий гамма-квантов и свой период полураспада. Обилие радионуклидов с разными периодами распада и наличие многих гамма-переходов в их схемах распада формирует практически непрерывный спектр гамма-излучения продуктов деления, изменяющийся в зависимости от времени работы реактора и времени его остановок. Активности продуктов деления в любой момент времени могут быть вычислены на основе данных о независимых или кумулятивных выходах продуктов деления и поперечных сечениях реакций, приводящих к их образованию. Примерно через год выдержки основной вклад в суммарный спектр вносят фотоны в энергетическом диапазоне от 0,5 до 0,9 МэВ со средней энергией 0,8 МэВ и суммарной энергией примерно 7,5 МэВ/деление.
Захватное гамма-излучение возникает при захвате нейтронов, как в материале топлива, так и в конструкционных элементах реактора, что приводит к тому, что оно образуется не только в активной зоне реактора, но и в окружающих ее конструкциях, в том числе в биологической защите реактора. Если в первом приближении считать, что в процессе деления 235U тепловыми нейтронами образуется 2,43 нейтр./деление, один из которых используется для самоподдерживающейся реакции деления, то примерно 1,43 нейтрона захватываются с образованием захватного гамма-излучения. Учитывая тот факт, что поперечные сечения захвата нейтронов конструкционными элементами реактора имеют максимальные значения для нейтронов тепловых энергий, а энергия связи нейтронов для ядер этих материалов находится в диапазоне 7-11 МэВ, то энергия захватных гамма-квантов определяется в основном энергией связи нейтрона в ядре и равна 7-11 МэВ. Это сильно проникающее фотонное излучение во многих случаях определяет габариты биологической защиты реактора.
Гамма-излучение неупругого рассеяния сопровождает захват быстрого нейтрона ядром с последующим испусканием нейтрона с меньшей энергией. Разница энергий захваченного и испущенного нейтронов реализуется испусканием гамма-квантов. Зависимости поперечных сечений неупругого рассеяния от энергии нейтронов имеют пороговый характер, поэтому этот процесс возможен только при энергиях нейтронов выше примерно 0,8 МэВ и на тяжелых материалах. Учитывая низкие значения поперечных сечений неупругого рассеяния и низкую энергию образующихся гамма-квантов (ниже 4 МэВ), вклад этого излучения в характеристики поля гамма-излучения реактора намного ниже, чем вклад захватного гамма-излучения.
Активационное гамма-излучение обусловлено реакциями захвата нейтрона стабильными ядрами реакторных материалов с образованием при этом радиоактивных нуклидов. В основном это происходит в результате реакций (n,γ) или (n,p). При выборе конструкционных элементов реактора принимаются все меры к снижению концентраций материалов, приводящих к образованию активационного излучения, тем не менее, оно всегда имеет место в результате коррозии материалов и попадания продуктов коррозии с теплоносителем первого контура в активную зону реактора. Характеристики образующихся радионуклидов активационного излучения хорошо известны, т.к. они относятся к радионуклидам, описанным выше.
Следует отметить особенности формирования полей гамма-излучения реактора. Если мгновенное, захватное, гамма-излучение неупругого рассеяния нейтронов и короткоживущая активационная активность теплоносителя 1-го контура образуются только при работе реактора и именно эти источники определяют его безопасную эксплуатацию, то гамма-излучение накопленных в процессе работы реактора продуктов деления и долгоживущих радионуклидов активационного излучения определяют гамма-излучение остановленного реактора, а, следовательно, определяют вопросы обращения с отработавшим ядерным топливом и с радиоактивными отходами, накапливаемыми на реакторе. Они же играют определяющую роль в радиационной обстановке, создаваемой в случае аварийной ситуации.