
- •Введение в теорию переноса и физику защиты от ионизирующих излучений
- •Содержание
- •Предисловие
- •Введение
- •Глава 1. Виды ионизирующих излучений
- •2.1.2. Токовые характеристики полей излучений.
- •Глава 3. Взаимодействие излучений с веществом
- •§ 3.1. Типы взаимодействий излучений с веществом.
- •3.1.1. Поглощение.
- •3.1.2. Ионизация и возбуждение.
- •3.1.3. Рассеяние.
- •3.1.4. Ядерные реакции.
- •§ 3.2. Эффективные поперечные сечения взаимодействия.
- •3.2.1.Микроскопические и макроскопические эффективные поперечные сечения взаимодействия.
- •3.2.2. Дифференциальные и интегральные эффективные поперечные сечения взаимодействия
- •§ 3.3. Взаимодействия фотонов с веществом.
- •5. Образование фотонейтронов.
- •3.3.1. Фотоэлектрическое поглощение.
- •3.3.2. Комптоновское рассеяние.
- •3.3.3.Процесс образования электрон-позитронных пар.
- •3.3.4. Характеристическое излучение.
- •3.3.5. Когерентное рассеяние.
- •3.3.6.Аннигиляционное излучение.
- •3.3.7. Тормозное излучение.
- •3.3.8. Образование фотонейтронов.
- •3.3.9. Макроскопичекие эффективные поперечные сечения взаимодействия фотонов с веществом.
- •§ 3.4. Взаимодействие нейтронов с веществом
- •3.4.1. Качественная картина взаимодействия нейтронов.
- •3.4.2. Формула Брейта-Вигнера
- •3.4.3. Радиационный захват.
- •3.4.4. Упругое рассеяние.
- •3.4.5. Неупругое рассеяние.
- •3.4.6. Кинематика рассеяния нейтронов
- •3.4.7. Специфика рассеяния тепловых нейтронов
- •3.4.8. Дифференциальные микроскопические поперечные сечения рассеяния
- •3.4.9. Ядерные реакции.
- •3.4.10. Полные эффективные микроскопические поперечные сечения взаимодействия нейтронов с веществом.
- •§ 3.5. Взаимодействия заряженных частиц с веществом.
- •3.5.1.Взаимодействия тяжелых заряженных частиц с веществом.
- •3.5.2. Взаимодействия электронов с веществом.
- •Глава 4. Дозовые характеристики полей излучений.
- •§ 4.1. Основные базисные дозовые характеристики полей излучений
- •4.1.1 Поглощенная доза
- •4.1.2.Керма.
- •4.1.3. Эквивалентная доза.
- •4.1.4. Эффективная доза.
- •4.1.5. Ожидаемая эффективная (эквивалентная) доза.
- •4.1.6. Доза эффективная (эквивалентная) годовая
- •4.1.7. Коллективная эффективная доза
- •4.1.8.Предотвращаемая эффективная доза
- •§ 4.2. Фантомные дозовые характеристики полей излучений
- •4.2.1. Показатель эквивалентной дозы.
- •4.2.2. Амбиентная эквивалентная доза.
- •§ 4.3. Связь между дифференциальными и дозовыми характеристиками полей излучений при внешнем облучении.
- •4.3.1. Фотонное излучение.
- •4.3.2.Заряженные частицы.
- •4.3.3.Нейтроны.
- •§ 4.4. Удельные дозиметрические характеристики полей излучений при внешнем облучении.
- •§ 4.5. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей излучений при внутреннем облучении.
- •4.5.1. Однокамерная модель оценки дозы.
- •4.5.2. Многокамерные модели оценки дозы.
- •4.5.3. Модель «удельной активности».
- •§ 4.6. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей фотонов при внешнем облучении.
- •Глава 5. Характеристики источников ионизирующих излучений
- •§ 5.1. Радионуклиды, как источники излучений
- •5.1.1. Активность и постоянная распада радионуклида
- •5.1.2. Схемы радиоактивных превращений
- •§ 5.2. Радионуклиды, как источники отдельных видов излучений.
- •5.2.1. Источники α-частиц.
- •5.2.2. Источники β-частиц и электронов.
- •Электронный (β-- распад):
- •5.2.3. Источники γ-излучения.
- •5.2.4. Источники нейтронов.
- •Основные характеристики (α,n)-источников нейтронов.
- •239Pu - α –Be (справа) источниками нейтронов.
- •Характеристики (γ,n)-источников нейтронов.
- •§ 5.3. Дозовые характеристики радионуклидов, как источников γ- излучения.
- •5.3.1. Керма – постоянные радионуклидов.
- •5.3.2. Керма – эквивалент радионуклидов.
- •§ 5.4. Установки для получения излучений.
- •5.4.1.Источники заряженных частиц.
- •5.4.2. Источники фотонного излучения.
- •5.4.3. Источники нейтронного излучения.
- •Значения констант формулы 5.28.
- •Доля запаздывающих нейтронов деления на 1 деление
- •Глава 6. Основные принципы нормирования и нормы радиационной безопасности.
- •§ 6.1. Биологические эффекты радиационного воздействия.
- •6.1.1. Детерминированные соматические поражения.
- •6.1.2. Стохастические соматические и генетические поражения.
- •6.1.3. Действие радиации на окружающую среду.
- •§ 6.2. Уровни фонового облучения человека.
- •6.2.1. Уровни естественного радиационного фона.
- •Концентрация естественных радионуклидов в почвах и создаваемые ими мощности поглощенной дозы на поверхности .
- •Среднемировые данные по рациону питания и скорости дыхания
- •Среднегодовые эффективные дозы радиации от различных источников естественного фона, мкЗв/год
- •6.2.2. Технологически повышенный естественный радиационный фон.
- •Концентрации естественных радионуклидов в различных строительных материалах, Бк/г и мощность поглощенной дозы в воздухе, нГр/ч х10
- •6.2.3. Искусственный радиационный фон.
- •Типичные значения эффективных доз пациентов при различных процедурах, мЗв
- •6.2.3. Дозовые нагрузки от всех источников радиационного фона.
- •§ 6.3. Принципы нормирования дозовых пределов.
- •6.3.1.Основные принципы нормирования радиационного фактора воздействия.
- •6.3.2.Концепция приемлемого риска.
- •1) Концепция нулевого риска;
- •2) Беспороговая концепция;
- •3) Концепция приемлемого риска.
- •Классификация источников риска
- •6.3.3. Экономические подходы к нормированию
- •§ 6.4 . Нормы радиационной безопасности. Основные дозовые пределы.
- •6.4.1. Пределы доз.
- •Коэффициенты риска для разных категорий облучаемых лиц, х10-5 (чел-мЗв)
- •6.4.2.Требования по ограничению облучения в условиях радиационной аварии
- •Критерии для принятия неотложных решений в начальном периоде радиационной аварии
- •6.4.3. Принципы расчетов предельно допустимых уровней и потоков ионизирующих излучений.
- •Параметры, используемые в нрб-99/2009 для оценки доз излучения.
- •Среднегодовые допустимые плотности потоков излучений для лиц из персонала при облучении, см-2 с-1
- •Значенияудельных дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала.
- •6.4.4. Комбинированное воздействие излучений.
- •Рекомендуемая литература
- •Используемые константы и обозначения.
5.3.2. Керма – эквивалент радионуклидов.
Во многих практических задачах удобно сравнивать радионуклиды по создаваемой ими дозе фотонного излучения при некоторых стандартных условиях. Такой дозовой характеристикой радионуклида, как гамма-излучателя, является керма-эквивалент.
Керма-эквивалент ке – это мощность воздушной кермы, создаваемой фотонами радионуклидного источника на расстоянии 1 м от него в вакууме. Единицей керма-эквивалента является грей-метр в квадрате за секунду (Гр м2 с-1).
Из определения керма-эквивалента следует связь между ним и активностью отдельного радионуклидного источника:
ке=А·Гк. (5.32).
Мощность кермы, создаваемой данным радионуклидом, керма-эквивалент которого равен ке на произвольном расстоянии R от него равна:
А·Гк
/R2=
ке/R2.
(5.33).
Удобство использования керма-эквивалента состоит в возможности проводить расчет доз, создаваемых смесью различных радионуклидов, например, смесью продуктов деления ядерного топлива атомных реакторов, для которой задается керма-эквивалент.
Контрольные вопросы к § 5.3
Дайте определение керма-постоянной радионуклида.
В чем разница между воздушной керма-постоянной и гамма-постоянной по поглощенной дозе в воздухе?
Для какого излучения введено понятие керма-постоянной?
В чем разница между полной и дифференциальной керма-постоянными?
Как учитываются дочерние продукты при определении керма-постоянной?
Чему равно максимальное значение керма-постоянной радионуклида с учетом фотонного излучения его дочерних продуктов?
Что такое керма-эквивалент радионуклида?
Как керма-эквивалент связан с керма-постоянной?
Назовите размерности керма-постоянной и керма-эквивалента.
§ 5.4. Установки для получения излучений.
В настоящее время в энергетике, медицине, промышленности широко используются специальные установки для получения мощных потоков различного вида ионизирующих излучений. Мощность таких источников излучений определяется параметрами установки и обычно задается числом частиц, которые в единицу времени испускаются установкой. Принципы получения отдельных видов частиц на установках зависят от вида частиц, поэтому рассмотрим наиболее широко используемые установки, разделяя их по виду излучения.
5.4.1.Источники заряженных частиц.
Ускорители заряженных частиц — устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом. Этот принцип ускорения частиц реализуется на электростатических ускорителях. Магнитное поле может изменять направление движения заряженных частиц, не меняя величины их скорости, поэтому в ускорителях оно применяется для управления движением частиц (формой траектории). В современных ускорителях на большие энергии ускоренных частиц используются и электрические и магнитные поля. В итоге, ускорители классифицируются по типу ускоряемых частиц: электронные, протонные ускорители и ускорители ионов; по характеру траекторий частиц: линейные, в которых траектории частиц близки к прямой линии, и циклические ускорители, в которых траектории частиц близки к окружности; по характеру ускоряющего поля: резонансные, в которых ускорение производится переменным высокочастотным электромагнитным полем; по механизму, обеспечивающему устойчивость движения частиц в перпендикулярных к орбите направлениях (фокусировку): ускорители с однородной фокусировкой, в которых фокусирующая сила постоянна вдоль траектории, и ускорители со знакопеременной фокусировкой, в которых фокусирующая сила меняет знак вдоль траектории и т.д.
Основными характеристиками ускорителя является энергия ускоренных частиц и ток частиц. С точки зрения характеристик источника заряженных частиц они рассматриваются как моноэнергетические источники частиц, энергия которых определяется ускоряющим напряжением, а угловое распределение частиц, падающих на мишень, можно считать мононаправленным. Наиболее широко используемые в практике линейные ускорители дают частицы с энергиями до десятков ГэВ, ускорители на высокие энергии представляют собой мощные дорогостоящие установки в единичном экземпляре с предполагаемой, например, на коллайдере в ЦЕРНе энергией протонов 14 ТэВ.