
- •Введение в теорию переноса и физику защиты от ионизирующих излучений
- •Содержание
- •Предисловие
- •Введение
- •Глава 1. Виды ионизирующих излучений
- •2.1.2. Токовые характеристики полей излучений.
- •Глава 3. Взаимодействие излучений с веществом
- •§ 3.1. Типы взаимодействий излучений с веществом.
- •3.1.1. Поглощение.
- •3.1.2. Ионизация и возбуждение.
- •3.1.3. Рассеяние.
- •3.1.4. Ядерные реакции.
- •§ 3.2. Эффективные поперечные сечения взаимодействия.
- •3.2.1.Микроскопические и макроскопические эффективные поперечные сечения взаимодействия.
- •3.2.2. Дифференциальные и интегральные эффективные поперечные сечения взаимодействия
- •§ 3.3. Взаимодействия фотонов с веществом.
- •5. Образование фотонейтронов.
- •3.3.1. Фотоэлектрическое поглощение.
- •3.3.2. Комптоновское рассеяние.
- •3.3.3.Процесс образования электрон-позитронных пар.
- •3.3.4. Характеристическое излучение.
- •3.3.5. Когерентное рассеяние.
- •3.3.6.Аннигиляционное излучение.
- •3.3.7. Тормозное излучение.
- •3.3.8. Образование фотонейтронов.
- •3.3.9. Макроскопичекие эффективные поперечные сечения взаимодействия фотонов с веществом.
- •§ 3.4. Взаимодействие нейтронов с веществом
- •3.4.1. Качественная картина взаимодействия нейтронов.
- •3.4.2. Формула Брейта-Вигнера
- •3.4.3. Радиационный захват.
- •3.4.4. Упругое рассеяние.
- •3.4.5. Неупругое рассеяние.
- •3.4.6. Кинематика рассеяния нейтронов
- •3.4.7. Специфика рассеяния тепловых нейтронов
- •3.4.8. Дифференциальные микроскопические поперечные сечения рассеяния
- •3.4.9. Ядерные реакции.
- •3.4.10. Полные эффективные микроскопические поперечные сечения взаимодействия нейтронов с веществом.
- •§ 3.5. Взаимодействия заряженных частиц с веществом.
- •3.5.1.Взаимодействия тяжелых заряженных частиц с веществом.
- •3.5.2. Взаимодействия электронов с веществом.
- •Глава 4. Дозовые характеристики полей излучений.
- •§ 4.1. Основные базисные дозовые характеристики полей излучений
- •4.1.1 Поглощенная доза
- •4.1.2.Керма.
- •4.1.3. Эквивалентная доза.
- •4.1.4. Эффективная доза.
- •4.1.5. Ожидаемая эффективная (эквивалентная) доза.
- •4.1.6. Доза эффективная (эквивалентная) годовая
- •4.1.7. Коллективная эффективная доза
- •4.1.8.Предотвращаемая эффективная доза
- •§ 4.2. Фантомные дозовые характеристики полей излучений
- •4.2.1. Показатель эквивалентной дозы.
- •4.2.2. Амбиентная эквивалентная доза.
- •§ 4.3. Связь между дифференциальными и дозовыми характеристиками полей излучений при внешнем облучении.
- •4.3.1. Фотонное излучение.
- •4.3.2.Заряженные частицы.
- •4.3.3.Нейтроны.
- •§ 4.4. Удельные дозиметрические характеристики полей излучений при внешнем облучении.
- •§ 4.5. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей излучений при внутреннем облучении.
- •4.5.1. Однокамерная модель оценки дозы.
- •4.5.2. Многокамерные модели оценки дозы.
- •4.5.3. Модель «удельной активности».
- •§ 4.6. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей фотонов при внешнем облучении.
- •Глава 5. Характеристики источников ионизирующих излучений
- •§ 5.1. Радионуклиды, как источники излучений
- •5.1.1. Активность и постоянная распада радионуклида
- •5.1.2. Схемы радиоактивных превращений
- •§ 5.2. Радионуклиды, как источники отдельных видов излучений.
- •5.2.1. Источники α-частиц.
- •5.2.2. Источники β-частиц и электронов.
- •Электронный (β-- распад):
- •5.2.3. Источники γ-излучения.
- •5.2.4. Источники нейтронов.
- •Основные характеристики (α,n)-источников нейтронов.
- •239Pu - α –Be (справа) источниками нейтронов.
- •Характеристики (γ,n)-источников нейтронов.
- •§ 5.3. Дозовые характеристики радионуклидов, как источников γ- излучения.
- •5.3.1. Керма – постоянные радионуклидов.
- •5.3.2. Керма – эквивалент радионуклидов.
- •§ 5.4. Установки для получения излучений.
- •5.4.1.Источники заряженных частиц.
- •5.4.2. Источники фотонного излучения.
- •5.4.3. Источники нейтронного излучения.
- •Значения констант формулы 5.28.
- •Доля запаздывающих нейтронов деления на 1 деление
- •Глава 6. Основные принципы нормирования и нормы радиационной безопасности.
- •§ 6.1. Биологические эффекты радиационного воздействия.
- •6.1.1. Детерминированные соматические поражения.
- •6.1.2. Стохастические соматические и генетические поражения.
- •6.1.3. Действие радиации на окружающую среду.
- •§ 6.2. Уровни фонового облучения человека.
- •6.2.1. Уровни естественного радиационного фона.
- •Концентрация естественных радионуклидов в почвах и создаваемые ими мощности поглощенной дозы на поверхности .
- •Среднемировые данные по рациону питания и скорости дыхания
- •Среднегодовые эффективные дозы радиации от различных источников естественного фона, мкЗв/год
- •6.2.2. Технологически повышенный естественный радиационный фон.
- •Концентрации естественных радионуклидов в различных строительных материалах, Бк/г и мощность поглощенной дозы в воздухе, нГр/ч х10
- •6.2.3. Искусственный радиационный фон.
- •Типичные значения эффективных доз пациентов при различных процедурах, мЗв
- •6.2.3. Дозовые нагрузки от всех источников радиационного фона.
- •§ 6.3. Принципы нормирования дозовых пределов.
- •6.3.1.Основные принципы нормирования радиационного фактора воздействия.
- •6.3.2.Концепция приемлемого риска.
- •1) Концепция нулевого риска;
- •2) Беспороговая концепция;
- •3) Концепция приемлемого риска.
- •Классификация источников риска
- •6.3.3. Экономические подходы к нормированию
- •§ 6.4 . Нормы радиационной безопасности. Основные дозовые пределы.
- •6.4.1. Пределы доз.
- •Коэффициенты риска для разных категорий облучаемых лиц, х10-5 (чел-мЗв)
- •6.4.2.Требования по ограничению облучения в условиях радиационной аварии
- •Критерии для принятия неотложных решений в начальном периоде радиационной аварии
- •6.4.3. Принципы расчетов предельно допустимых уровней и потоков ионизирующих излучений.
- •Параметры, используемые в нрб-99/2009 для оценки доз излучения.
- •Среднегодовые допустимые плотности потоков излучений для лиц из персонала при облучении, см-2 с-1
- •Значенияудельных дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала.
- •6.4.4. Комбинированное воздействие излучений.
- •Рекомендуемая литература
- •Используемые константы и обозначения.
Электронный (β-- распад):
AZX→
AZ+1Y
+ β-
+
(5.14),
при котором выбрасываются электрон β- и антинейтрино , а дочернее ядро получает заряд на единицу больший, чем материнское, так как в ядре уменьшается число нейтронов на единицу за счет увеличения на единицу числа протонов. Как пример β - -распада можно привести распад естественного 40K с превращением его в 40Ca:
1940К→2040Са + -10е+ (5.15)
Позитронный (β+- распад) происходит, если ядро имеет избыток протонов:
AZX→ AZ-1Y + β+ + ν (5.16),
при котором выбрасываются позитрон β+ и нейтрино ν, а дочернее ядро получает заряд на единицу меньший, чем материнское, так как в ядре увеличивается на единицу число нейтронов из-за уменьшения на единицу числа протонов. Примером β+- распада может служить распад
1530P = 1430Si + 10е+ ν (5.17)
Некоторое подобие позитронного распада представляет К-захват.
К-захват - захват орбитального электрона, находящегося на К- оболочке, ядром
AZX+ е- → AZ-1Y + ν (5.18),
где е- - атомный электрон. В общем случае, если энергия перехода меньше энергии связи К-электрона, то процесс наблюдается на L-электронах и т.д. При этом выбрасывается нейтрино ν, а дочернее ядро получает заряд на единицу меньше, чем материнское. Выражение (5.19) описывает процесс К-захвата ядром 2964Сu:
2964Сu +-10e = 2864Ni + ν (5.19)
К-захват и β+- распад часто конкурируют между собой, так как ядра претерпевают одинаковые превращения.
Таким образом, при β-распаде любого вида число нуклонов в ядре сохраняется, но происходит самопроизвольное превращение либо нейтрона в протон (β-- распад), либо протона в нейтрон (β +-распад и К-захват). Именно поэтому К-захват можно отнести к процессам β +- распада. Так как при β +- распаде изменяется только один из нуклонов ядра, то этот процесс можно отнести к внутринуклонному, а не внутриядерному.
В
процессе β-распада
одинаковых ядер испускаются три частицы,
поэтому в соответствии с законами
сохранения энергии и импульса энергия
каждой частицы может принимать значение
от нуля до максимальной в зависимости
от взаимной ориентации импульсов. Таким
образом, в результате β-
распада образуются β
-частицы всех энергий от нуля и до энергии
Еβmax,
называемой верхней
границей β-спектра.
На рис. 5.6 представлены для примера энергетические спектры β--частиц, испускаемых при распаде часто используемых радионуклидов. Средняя энергия β- частиц, испускаемых при максимальной энергии β-спектра выше 0,5 МэВ примерно равна (1/2)·Еβmax. Обычно средняя энергия β-частиц близка к 1/3 максимальной.
Рис.5.6. Спектры β-частиц, испускаемых при распаде различных β - излучателей
Помимо β-распада испускание электронов атомом может происходить и по иным причинам. Кулоновское поле ядра может передать всю энергию возбуждения ядра одному из атомных электронов, при этом из атома вылетает электрон внутренней конверсии. Так как энергия возбуждения ядра имеет конкретное дискретное значение, то кинетическая энергия электронов внутренней конверсии ЕеК,L тоже имеет конкретное дискретное значение:
ЕеК=Е*-ЕК,;ЕеL=Е*-ЕL (5.20)
где ЕК, Е L - энергия связи электронов на соответствующих оболочках, Е* - энергия возбуждения ядра.
При К-захвате или при внутренней конверсии за счет захвата или вылета электрона, находящегося на внутренней оболочке атома, образуется вакансия, которая быстро (за время 10-15с) заполняется электроном с внешней по отношению к вакантной оболочки. При этом энергия возбуждения атома может передаваться непосредственно одному из внешних электронов атома, что сопровождается испусканием низкоэнергетических электронов 0же. При образовании вакансии на К-оболочке самые легкие атомы испускают Оже электроны с энергией равной ЕК,-Е2L , Е2L – энергия связи двух электронов на L-оболочке, , тогда как атомы с Z>32 испускают главным образом кванты характеристического излучения, и с меньшей вероятностью Оже электроны.
Все радионуклидные источники бета и электронного излучения испускают сопутствующее фотонное излучение. Физическая природа его образования многообразна.
Как правило, за счет энергии β-распада ядро остается в возбужденном состоянии, переход из которого в основное состояние чаще всего сопровождается γ –переходами между возбужденными уровнями ядра, т.е. радионуклид одновременно является и γ –излучателем (см. рис.5.4, 5.5), что представляет основную радиационную опасность при работе с источниками β-излучения. Иногда энергия возбуждения ядра превышает энергию связи нуклона в ядре. В этом случае снятие возбуждения реализуется испусканием протона, нейтрона или α – частицы. К категории таких радионуклидов можно отнести около десятка радионуклидов - продуктов деления ядер, дающих при β-распаде запаздывающие нейтроны. При внутренней конверсии после вылета электрона с К-оболочки или при К-захвате атом остается в возбужденном состоянии; образовавшаяся энергетическая вакансия на К-оболочке заполняется одним из электронов с внешних оболочек атома с испусканием квантов характеристического излучения с энергией равной разности энергий связи электронов, находящихся на соответствующих оболочках. Учитывая, что разница энергий электронов на электронных оболочках атома зависит от нуклида, испускаемое моноэнергетическое характеристическое излучение часто используется для идентификации нуклида. В процессе β+ - распада образовавшийся позитрон практически тут же в поле ядра аннигилирует со свободным электроном, образуя два аннигиляционных γ –кванта c энергией 0,511 МэВ. Количество таких гамма-квантов определяется вероятностью β+-распада радионуклида. Образовавшиеся в процессе β-распада, К-захвата и внутренней конверсии электроны, замедляясь и взаимодействуя с электромагнитным полем атомов материала либо самого источника, либо защиты формируют поле тормозного гамма-излучения.
Для оценки интенсивности образующегося тормозного излучения при полном поглощении β - частиц или электронов в материале с атомным номером Z можно использовать приближенные формулы:
для β – излучения:
Yβ
= 1,23·10-4
·(Z+3)
(5.21)
или более точную:
Yβ
= 8,5·10-4
·(Z+3)
(5.22),
для моноэнергетических электронов с энергией ниже 1 МэВ:
Ye
=5,77·10-4
·Z
(5.23).
В
формулах: Yβ
, Ye
- выход тормозного излучения, МэВ/распад,
Z
–
атомный номер материала, в котором
происходит торможение частиц,
,
- выход β
- частиц
или электронов на один распад ядра,
,
,
- максимальная и средняя энергии
β-излучения
и моноэнергетических электронов i-ой
энергетической группы соответственно,
МэВ,
I
– число
энергетических β
– переходов в радионуклиде.
Спектральное
распределение тормозного излучения
приведено на рис.5.7, где по оси абсцисс
энергии фотонов тормозного излучения
приведены в долях
для β
- частиц
и
для моноэнергетических электронов.
Характерно, что спектры тормозного
излучения, хотя по энергии и простираются
до
и
,
но в значительной степени обогащены
низко энергетичными фотонами.
Рис.5.7. Энергетическое распределение тормозного излучения
Кстати видно, что спектр тормозного излучения, создаваемого электронами с энергией равной , жестче соответствующего спектра, создаваемого β – частицами. Знание схем распада определенного радионуклида позволяет учесть корректно все сопутствующее излучение.