
- •Введение в теорию переноса и физику защиты от ионизирующих излучений
- •Содержание
- •Предисловие
- •Введение
- •Глава 1. Виды ионизирующих излучений
- •2.1.2. Токовые характеристики полей излучений.
- •Глава 3. Взаимодействие излучений с веществом
- •§ 3.1. Типы взаимодействий излучений с веществом.
- •3.1.1. Поглощение.
- •3.1.2. Ионизация и возбуждение.
- •3.1.3. Рассеяние.
- •3.1.4. Ядерные реакции.
- •§ 3.2. Эффективные поперечные сечения взаимодействия.
- •3.2.1.Микроскопические и макроскопические эффективные поперечные сечения взаимодействия.
- •3.2.2. Дифференциальные и интегральные эффективные поперечные сечения взаимодействия
- •§ 3.3. Взаимодействия фотонов с веществом.
- •5. Образование фотонейтронов.
- •3.3.1. Фотоэлектрическое поглощение.
- •3.3.2. Комптоновское рассеяние.
- •3.3.3.Процесс образования электрон-позитронных пар.
- •3.3.4. Характеристическое излучение.
- •3.3.5. Когерентное рассеяние.
- •3.3.6.Аннигиляционное излучение.
- •3.3.7. Тормозное излучение.
- •3.3.8. Образование фотонейтронов.
- •3.3.9. Макроскопичекие эффективные поперечные сечения взаимодействия фотонов с веществом.
- •§ 3.4. Взаимодействие нейтронов с веществом
- •3.4.1. Качественная картина взаимодействия нейтронов.
- •3.4.2. Формула Брейта-Вигнера
- •3.4.3. Радиационный захват.
- •3.4.4. Упругое рассеяние.
- •3.4.5. Неупругое рассеяние.
- •3.4.6. Кинематика рассеяния нейтронов
- •3.4.7. Специфика рассеяния тепловых нейтронов
- •3.4.8. Дифференциальные микроскопические поперечные сечения рассеяния
- •3.4.9. Ядерные реакции.
- •3.4.10. Полные эффективные микроскопические поперечные сечения взаимодействия нейтронов с веществом.
- •§ 3.5. Взаимодействия заряженных частиц с веществом.
- •3.5.1.Взаимодействия тяжелых заряженных частиц с веществом.
- •3.5.2. Взаимодействия электронов с веществом.
- •Глава 4. Дозовые характеристики полей излучений.
- •§ 4.1. Основные базисные дозовые характеристики полей излучений
- •4.1.1 Поглощенная доза
- •4.1.2.Керма.
- •4.1.3. Эквивалентная доза.
- •4.1.4. Эффективная доза.
- •4.1.5. Ожидаемая эффективная (эквивалентная) доза.
- •4.1.6. Доза эффективная (эквивалентная) годовая
- •4.1.7. Коллективная эффективная доза
- •4.1.8.Предотвращаемая эффективная доза
- •§ 4.2. Фантомные дозовые характеристики полей излучений
- •4.2.1. Показатель эквивалентной дозы.
- •4.2.2. Амбиентная эквивалентная доза.
- •§ 4.3. Связь между дифференциальными и дозовыми характеристиками полей излучений при внешнем облучении.
- •4.3.1. Фотонное излучение.
- •4.3.2.Заряженные частицы.
- •4.3.3.Нейтроны.
- •§ 4.4. Удельные дозиметрические характеристики полей излучений при внешнем облучении.
- •§ 4.5. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей излучений при внутреннем облучении.
- •4.5.1. Однокамерная модель оценки дозы.
- •4.5.2. Многокамерные модели оценки дозы.
- •4.5.3. Модель «удельной активности».
- •§ 4.6. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей фотонов при внешнем облучении.
- •Глава 5. Характеристики источников ионизирующих излучений
- •§ 5.1. Радионуклиды, как источники излучений
- •5.1.1. Активность и постоянная распада радионуклида
- •5.1.2. Схемы радиоактивных превращений
- •§ 5.2. Радионуклиды, как источники отдельных видов излучений.
- •5.2.1. Источники α-частиц.
- •5.2.2. Источники β-частиц и электронов.
- •Электронный (β-- распад):
- •5.2.3. Источники γ-излучения.
- •5.2.4. Источники нейтронов.
- •Основные характеристики (α,n)-источников нейтронов.
- •239Pu - α –Be (справа) источниками нейтронов.
- •Характеристики (γ,n)-источников нейтронов.
- •§ 5.3. Дозовые характеристики радионуклидов, как источников γ- излучения.
- •5.3.1. Керма – постоянные радионуклидов.
- •5.3.2. Керма – эквивалент радионуклидов.
- •§ 5.4. Установки для получения излучений.
- •5.4.1.Источники заряженных частиц.
- •5.4.2. Источники фотонного излучения.
- •5.4.3. Источники нейтронного излучения.
- •Значения констант формулы 5.28.
- •Доля запаздывающих нейтронов деления на 1 деление
- •Глава 6. Основные принципы нормирования и нормы радиационной безопасности.
- •§ 6.1. Биологические эффекты радиационного воздействия.
- •6.1.1. Детерминированные соматические поражения.
- •6.1.2. Стохастические соматические и генетические поражения.
- •6.1.3. Действие радиации на окружающую среду.
- •§ 6.2. Уровни фонового облучения человека.
- •6.2.1. Уровни естественного радиационного фона.
- •Концентрация естественных радионуклидов в почвах и создаваемые ими мощности поглощенной дозы на поверхности .
- •Среднемировые данные по рациону питания и скорости дыхания
- •Среднегодовые эффективные дозы радиации от различных источников естественного фона, мкЗв/год
- •6.2.2. Технологически повышенный естественный радиационный фон.
- •Концентрации естественных радионуклидов в различных строительных материалах, Бк/г и мощность поглощенной дозы в воздухе, нГр/ч х10
- •6.2.3. Искусственный радиационный фон.
- •Типичные значения эффективных доз пациентов при различных процедурах, мЗв
- •6.2.3. Дозовые нагрузки от всех источников радиационного фона.
- •§ 6.3. Принципы нормирования дозовых пределов.
- •6.3.1.Основные принципы нормирования радиационного фактора воздействия.
- •6.3.2.Концепция приемлемого риска.
- •1) Концепция нулевого риска;
- •2) Беспороговая концепция;
- •3) Концепция приемлемого риска.
- •Классификация источников риска
- •6.3.3. Экономические подходы к нормированию
- •§ 6.4 . Нормы радиационной безопасности. Основные дозовые пределы.
- •6.4.1. Пределы доз.
- •Коэффициенты риска для разных категорий облучаемых лиц, х10-5 (чел-мЗв)
- •6.4.2.Требования по ограничению облучения в условиях радиационной аварии
- •Критерии для принятия неотложных решений в начальном периоде радиационной аварии
- •6.4.3. Принципы расчетов предельно допустимых уровней и потоков ионизирующих излучений.
- •Параметры, используемые в нрб-99/2009 для оценки доз излучения.
- •Среднегодовые допустимые плотности потоков излучений для лиц из персонала при облучении, см-2 с-1
- •Значенияудельных дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала.
- •6.4.4. Комбинированное воздействие излучений.
- •Рекомендуемая литература
- •Используемые константы и обозначения.
§ 4.6. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей фотонов при внешнем облучении.
Радионуклиды в окружающей среде создают не только внутреннее облучение органов и организма человека при поступлении с воздухом водой и пищей, но в ряде случаев оказывают большее воздействие за счет внешнего облучения. Например, инертные радиоактивные газы (ИРГ), такие, как изотопы Ar, Kr, Xe, поступающие в приземную атмосферу с выбросами АЭС, формируют дозу в основном за счет внешнего фотонного облучения. Осаждение радионуклидов из атмосферы на поверхность Земли приводит к поверхнстному или объемному радионуклидному загрязнению почвы или водоемов. Внешнее фотонное облучение от этих радионуклидов также создает дополнительные дозовые нагрузки для людей, находящихся на загрязненной территории. В случае аварийной ситуации облако радионуклидов создает основную дозовую нагрузку на население тоже за счет внешнего облучения фотонами. Сбросы радионуклидов в поверхностные водоемы, приводящие к загрязнению водной среды, формируют дозы внешнего облучения. Во всех этих случаях возникает задача перехода от измеренной или рассчитанной концентрации радионуклида, как гамма-излучателя, в воздухе, воде или почве к создаваемой им эффективной дозе внешнего облучения.
При оценке эффективной дозы внешнего облучения, создаваемой радионуклидами в этих случаях, предполагается, что радиоактивное загрязнение представляет собой полубесконечное пространство с равномерно распределенной активностью радионуклида Аv, и выполняется условие лучевого равновесия. Условие лучевого равновесия, часто используемое для расчета доз, создаваемых бесконечными или полубесконечными источниками радионуклидов, заключается в том, что поглощенная энергия в элементе массы dm материала источника равна испущенной энергии из этого же элемента. Тогда мощность поглощенной дозы внутри бесконечного источника, например, в воздухе, создаваемая фотонным излучением радионуклида, может быть рассчитана следующим образом:
в=
,
Гр/с (4.46).
В формуле (4.46): dW
и dEисп
- поглощенная
в единицу времени в элементе массы dm
воздуха и испущенная этим элементом
массы энергия фотонов соответственно,
Аv
– концентрация
радионуклида в облаке, Бк/м3,
,
- энергия фотонов в МэВ
и выход фотонов на один акт распада
радионуклида с этой энергией,
=1,293
кг/м3
- плотность
воздуха.
Для точек, находящихся на поверхности Земли, мощность поглощенной дозы, пренебрегая отражением от поверхности Земли излучения, испускаемого радионуклидом, находящимся в атмосфере, будет в два раза ниже по сравнению с рассчитанной по формуле (4.46) из-за отсутствия полупространства с источником. Переход от поглощенной дозы в воздухе к эффективной дозе для фотонов подробно рассмотрен выше в разделе 4.3.1.
Рассмотренный подход может быть использован и для оценки эффективной дозы по известной удельной активности радионуклидов в почве или воде. В этом случае в соотношении (4.46) добавится отношение массовых коэффициентов поглощения энергии для почвы или воды к воздуху, т.е., например, мощность поглощенной дозы в воздухе над загрязненным равномерно полубесконечным слоем почвы запишется в виде:
в=
,
Гр/с (4.47),
где Ап,
Бк/кг –
удельная активность почвы,
,
м2/кг
– массовые коэффициенты поглощения
энергии для почвы и воздуха, соответственно.
Отношение / слабо зависит от энергии фотонов и для почвы и воды может быть принято равным соответственно 1,13 и 0,9 в диапазоне энергий фотонов от 0,2 до 3 МэВ
Входящие в выражения (4.46), (4.47) суммы при оценках мощности дозы могут быть выражены через керма-постоянную радионуклида ГК (см. разд. 5.4.1) и тогда выражения (4.46) и (4.47) можно упростить:
в=
,
аГр/с (4.48),
понимая под l
- область
биосферы, где находится радионуклид
(воздух, почва или вода). Удельная
активность
выражается
при этом в Бк/кг,
а
в м2/кг.
Контрольные вопросы к § 4.5.
Какие упрощающие предположения делаются при расчетах дозы внешнего облучения от фотонов, испускаемых радионуклидами равномерно распределенными в воздухе?
В чем сущность метода лучевого равновесия?
Учитывается ли рассеянное фотонное излучение, формируемое в материале источника, при расчетах по формулам (4.46) - (4.48) мощностей доз в воздухе?
Как оценить поглощенные дозы в воздухе на границе с почвой или водой от радионуклидов, депонированных в почве или воде?