
- •Введение в теорию переноса и физику защиты от ионизирующих излучений
- •Содержание
- •Предисловие
- •Введение
- •Глава 1. Виды ионизирующих излучений
- •2.1.2. Токовые характеристики полей излучений.
- •Глава 3. Взаимодействие излучений с веществом
- •§ 3.1. Типы взаимодействий излучений с веществом.
- •3.1.1. Поглощение.
- •3.1.2. Ионизация и возбуждение.
- •3.1.3. Рассеяние.
- •3.1.4. Ядерные реакции.
- •§ 3.2. Эффективные поперечные сечения взаимодействия.
- •3.2.1.Микроскопические и макроскопические эффективные поперечные сечения взаимодействия.
- •3.2.2. Дифференциальные и интегральные эффективные поперечные сечения взаимодействия
- •§ 3.3. Взаимодействия фотонов с веществом.
- •5. Образование фотонейтронов.
- •3.3.1. Фотоэлектрическое поглощение.
- •3.3.2. Комптоновское рассеяние.
- •3.3.3.Процесс образования электрон-позитронных пар.
- •3.3.4. Характеристическое излучение.
- •3.3.5. Когерентное рассеяние.
- •3.3.6.Аннигиляционное излучение.
- •3.3.7. Тормозное излучение.
- •3.3.8. Образование фотонейтронов.
- •3.3.9. Макроскопичекие эффективные поперечные сечения взаимодействия фотонов с веществом.
- •§ 3.4. Взаимодействие нейтронов с веществом
- •3.4.1. Качественная картина взаимодействия нейтронов.
- •3.4.2. Формула Брейта-Вигнера
- •3.4.3. Радиационный захват.
- •3.4.4. Упругое рассеяние.
- •3.4.5. Неупругое рассеяние.
- •3.4.6. Кинематика рассеяния нейтронов
- •3.4.7. Специфика рассеяния тепловых нейтронов
- •3.4.8. Дифференциальные микроскопические поперечные сечения рассеяния
- •3.4.9. Ядерные реакции.
- •3.4.10. Полные эффективные микроскопические поперечные сечения взаимодействия нейтронов с веществом.
- •§ 3.5. Взаимодействия заряженных частиц с веществом.
- •3.5.1.Взаимодействия тяжелых заряженных частиц с веществом.
- •3.5.2. Взаимодействия электронов с веществом.
- •Глава 4. Дозовые характеристики полей излучений.
- •§ 4.1. Основные базисные дозовые характеристики полей излучений
- •4.1.1 Поглощенная доза
- •4.1.2.Керма.
- •4.1.3. Эквивалентная доза.
- •4.1.4. Эффективная доза.
- •4.1.5. Ожидаемая эффективная (эквивалентная) доза.
- •4.1.6. Доза эффективная (эквивалентная) годовая
- •4.1.7. Коллективная эффективная доза
- •4.1.8.Предотвращаемая эффективная доза
- •§ 4.2. Фантомные дозовые характеристики полей излучений
- •4.2.1. Показатель эквивалентной дозы.
- •4.2.2. Амбиентная эквивалентная доза.
- •§ 4.3. Связь между дифференциальными и дозовыми характеристиками полей излучений при внешнем облучении.
- •4.3.1. Фотонное излучение.
- •4.3.2.Заряженные частицы.
- •4.3.3.Нейтроны.
- •§ 4.4. Удельные дозиметрические характеристики полей излучений при внешнем облучении.
- •§ 4.5. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей излучений при внутреннем облучении.
- •4.5.1. Однокамерная модель оценки дозы.
- •4.5.2. Многокамерные модели оценки дозы.
- •4.5.3. Модель «удельной активности».
- •§ 4.6. Связь между концентрациями радионуклидов в окружающей среде и дозовыми характеристиками полей фотонов при внешнем облучении.
- •Глава 5. Характеристики источников ионизирующих излучений
- •§ 5.1. Радионуклиды, как источники излучений
- •5.1.1. Активность и постоянная распада радионуклида
- •5.1.2. Схемы радиоактивных превращений
- •§ 5.2. Радионуклиды, как источники отдельных видов излучений.
- •5.2.1. Источники α-частиц.
- •5.2.2. Источники β-частиц и электронов.
- •Электронный (β-- распад):
- •5.2.3. Источники γ-излучения.
- •5.2.4. Источники нейтронов.
- •Основные характеристики (α,n)-источников нейтронов.
- •239Pu - α –Be (справа) источниками нейтронов.
- •Характеристики (γ,n)-источников нейтронов.
- •§ 5.3. Дозовые характеристики радионуклидов, как источников γ- излучения.
- •5.3.1. Керма – постоянные радионуклидов.
- •5.3.2. Керма – эквивалент радионуклидов.
- •§ 5.4. Установки для получения излучений.
- •5.4.1.Источники заряженных частиц.
- •5.4.2. Источники фотонного излучения.
- •5.4.3. Источники нейтронного излучения.
- •Значения констант формулы 5.28.
- •Доля запаздывающих нейтронов деления на 1 деление
- •Глава 6. Основные принципы нормирования и нормы радиационной безопасности.
- •§ 6.1. Биологические эффекты радиационного воздействия.
- •6.1.1. Детерминированные соматические поражения.
- •6.1.2. Стохастические соматические и генетические поражения.
- •6.1.3. Действие радиации на окружающую среду.
- •§ 6.2. Уровни фонового облучения человека.
- •6.2.1. Уровни естественного радиационного фона.
- •Концентрация естественных радионуклидов в почвах и создаваемые ими мощности поглощенной дозы на поверхности .
- •Среднемировые данные по рациону питания и скорости дыхания
- •Среднегодовые эффективные дозы радиации от различных источников естественного фона, мкЗв/год
- •6.2.2. Технологически повышенный естественный радиационный фон.
- •Концентрации естественных радионуклидов в различных строительных материалах, Бк/г и мощность поглощенной дозы в воздухе, нГр/ч х10
- •6.2.3. Искусственный радиационный фон.
- •Типичные значения эффективных доз пациентов при различных процедурах, мЗв
- •6.2.3. Дозовые нагрузки от всех источников радиационного фона.
- •§ 6.3. Принципы нормирования дозовых пределов.
- •6.3.1.Основные принципы нормирования радиационного фактора воздействия.
- •6.3.2.Концепция приемлемого риска.
- •1) Концепция нулевого риска;
- •2) Беспороговая концепция;
- •3) Концепция приемлемого риска.
- •Классификация источников риска
- •6.3.3. Экономические подходы к нормированию
- •§ 6.4 . Нормы радиационной безопасности. Основные дозовые пределы.
- •6.4.1. Пределы доз.
- •Коэффициенты риска для разных категорий облучаемых лиц, х10-5 (чел-мЗв)
- •6.4.2.Требования по ограничению облучения в условиях радиационной аварии
- •Критерии для принятия неотложных решений в начальном периоде радиационной аварии
- •6.4.3. Принципы расчетов предельно допустимых уровней и потоков ионизирующих излучений.
- •Параметры, используемые в нрб-99/2009 для оценки доз излучения.
- •Среднегодовые допустимые плотности потоков излучений для лиц из персонала при облучении, см-2 с-1
- •Значенияудельных дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала.
- •6.4.4. Комбинированное воздействие излучений.
- •Рекомендуемая литература
- •Используемые константы и обозначения.
4.5.2. Многокамерные модели оценки дозы.
Для более точного описания поступления радионуклида в организм и его метаболизма в организме и распределения по отдельным органам используются более подробные многокамерные модели. В качестве примера на рис.4.9 показана 5-и камерная дозиметрическая модель желудочно-кишечного тракта, используемая для оценки активности радионуклидов, накапливающихся в отдельных камерах ЖКТ при их поступлении в организм с пищей или водой.
Р
ис.4.9.
Камерная модель описания кинетики
радионуклидов в желудочно-кишечном
тракте.
В многокамерных моделях предполагается, что изменение активности радионуклида в камере определяется его радиоактивным распадом и коэффициентами перехода активности из предшествующей камеры и убылью ее в последующую камеру. Принимая эти коэффициенты перехода из камеры i в камеру к – λб,i→k независимыми от времени и определяемыми данными по метаболизму для каждого радионуклида, уравнение (4.29) для динамики накопления радионуклида в камере i преобразуется к виду:
dqi(t)/dt=
-
-
λ
qi(t)
+ Ii
(4.44).
В уравнении (4.41): λ – постоянная радиоактивного распада, а Ii – поступление в камеру i , если это имеет место. Решая систему обыкновенных дифференциальных уравнений, описывающих подобно (4.44) динамику измененения активности в каждой камере, можно определить накопление радионуклида в выделенных камерах-органах и, используя выше описанные подходы, перейти к ожидаемой эффективной дозе.
В зависимости от пути поступления радионуклида в организм используются различные многокамерные модели. В зависимости от радионуклида учитывается влияние его химической и физической формы на коэффициенты перехода из камеры в камеру, проводится учет дочерних продуктов, если таковые имеются.
С учетом всех этих эффектов к настоящему времени для разных радионуклидов получены коэффициенты перехода ек, Зв/Бк, непосредственно к эффективной дозе от единичной активности данного радионуклида, поступившей в организм, которые можно определить, как удельные дозовые коэффициенты внутреннего облучения при различных путях поступления радионуклида в организм (к характеризует способ поступления: с воздухом, водой или пищей). Для их нахождения достаточно в выше приведенных формулах подставить I=1Бк.
Используя удельные дозовые коэффициенты, приводимые в справочной литературе, не представляет труда рассчитать мощность эффективной дозы внутреннего облучения:
E = ек I (4.45).
4.5.3. Модель «удельной активности».
Одной из простейших моделей для оценки доз внутреннего облучения и определения активности радионуклида в органе является модель "удельной активности". Она основывается на предположении, что распределение радионуклида равномерно в определенной среде и его удельная активность постоянна по отношению к какому-либо стабильному аналогу. Тогда, зная массу стабильного аналога в теле человека, можно определить активность в нем радионуклида. Примером такого подхода может служить нахождение активности трития в организме по количеству воды в нем и по доле трития в поверхностных водах океана или 40К по содержанию естественного калия в организме и доле 40К в естественном калии.
Контрольные вопросы к § 4.5.
От каких параметров человека зависит формирование дозы внутреннего облучения?
Что представляет собой простейшая модель накопления и выведения радионуклидов в органе человека?
Что такое эффективная поглощенная энергия в органе?
Запишите уравнение баланса активности в органе или ткани при непрерывном поступлении радионуклида в организм.
Чему равна эквивалентная доза в органе при разовом поступлении радионуклида в организм?
Каким образом при расчете эквивалентной дозы в данном органе учитывается излучение радионуклида, депонированного в других органах?
Что характеризует удельная эффективная энергия?
В чем сущность камерных моделей накопления радионуклидов в органах человека?
Что такое удельные эффективные дозы внутреннего облучения?